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In the chemical sciences, many laboratory experiments, environmental and industrial processes, as well as
modeling exercises, are characterized by large numbers of input variables. A general objective in such cases
is an exploration of the high-dimensional input variable space as thoroughly as possible for its impact on
observable system behavior, often with either optimization in mind or simply for achieving a better
understanding of the phenomena involved. An important concern when undertaking these explorations is the
number of experiments or modeling excursions necessary to effectively learn the system inputf output
behavior, which is typically a nonlinear relationship. Although simple logic suggests that the number of runs
could grow exponentially with the number of input variables, broadscale evidence indicates that the required
effort often scales far more comfortably. This paper considers an emerging family of high dimensional model
representation concepts and techniques capable of dealing with such inputf output problems in a practical
fashion. A summary of the state of the subject is presented, along with several illustrations from various
areas in the chemical sciences.

1. Background

This paper is concerned with a common situation associated
with either the performance of experiments or the modeling of
chemical/physical systems where there are large numbers of
input variables accessible for alteration. The latter alteration of
the input variables may be done with some design strategy in
mind, or it may occur randomly due to natural uncontrolled
variations in the input. In either circumstance, a frequent goal
is to perform as many runs as possible, aiming at an exploration
of the input variable space with respect to its impact on one or
more system observables of interest. Such exercises may be
performed either to gain a physical understanding of the role
of the input variables, or often, ultimately for purposes of
optimization to achieve one or more desired physical objectives
by special choice of the input variables. This paper addresses
the use of high dimensional model representation (HDMR) for
making such efforts more feasible.

Before dealing with the technical issues involved with high
dimensional (i.e., systems with large numbers of input variables)
input f output (IO) mapping at the heart of HDMR, consid-
eration of some typical examples is useful. Cases of high
dimensional IO mappings abound, and the discussion here does
not aim to be thorough; further consideration of HDMR
applications will be returned to later in section 3. As a first
example, many complex materials are specified by input
variables that consist of the chemical components prescribing
the substance of interest. In a mixture formulation, these input
variables may be expressed as the mole fractions of the chemical
species, where the observables are one or more properties of
the mixture (e.g., the viscoelastic properties of a polymer blend).
Such mixture problems are complex, as typically, the properties
of the mixture are not just a linear combination of the properties
of the input chemical components. A similar problem arises in
chemical kinetics, where the input variables are the initial
chemical concentrations, and the outputs are the concentrations
at some latter time. Molecular materials (i.e., a sample consisting
of a single type of molecule) encompass many applications,
including mutated proteins and pharmaceuticals. For a molecular
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material, theith variable may be associated with theith site for
chemical functionalization on a reference molecular structure.
In the case of a protein subject to amino acid mutation, the
total number of variables (i.e., sites for mutation) can be very
large, and variablexi associated with protein backbone sitei
may take on up to 20 values over the naturally occurring amino
acids. In contrast, pharmaceutical molecules are typically of
modest-size, generated by functionalization of a small number
of sites on a reference chemical scaffold. For pharmaceuticals,
the ith site variable could take on a large number of values, as
a rather arbitrary set of chemical moieties may be considered
for substitution on a suitable molecular scaffold. Molecular
materials inherently differ from those of mixture formulations,
as molecular moiety input variables are discrete (e.g., methyl-,
ethyl-, chloro-, etc.), while the component mole fractions as
input variables in mixtures can take on continuous values.
Mixture materials drawn from a large set of possible molecular
species have both discrete and continuous variables. All of these
material problems, characterized by either large numbers of input
variables or large numbers of variable values, has led to much
interest in high throughput synthesis and screening techniques
in an attempt to deal with the potentially exploding number of
samples that may be considered.

Another class of problems with high dimensional input occurs
in molecular modeling, where the inter- or intramolecular
potential surface as an inputfunction dictates all relevant
dynamical evolution and properties, leading to one or more
observables such as cross sections, rate constants, etc. In this
case, the input potential function lies in a space that, in principle,
is described by an infinite number of variables, or more
practically, large numbers of discretized variables that define a
realistic family of potential surfaces. A physically distinct, but
mathematically analogous, inputf output mapping problem
involves solar radiation transport through the atmosphere, where
the input consists of the column densities of various trace gases
and the atmospheric temperature as a function of altitude, and
the output is the atmospheric heating rate (i.e., as a function of
the altitude) due to net solar radiation absorption. This applica-
tion is of relevance to global warming, atmospheric kinetics,
and general weather modeling. In this case, as for the previous
example with potential surfaces, it would be natural to discretize
the input functions to form a set of variables representing
reasonable spatial resolution. In this context an input variable
is, for example, the value of an input column density at a
particular altitude.

A common characteristic of all the aforementioned illustra-
tions, and many others, is the large number of variables that
may naturally arise to describe the input. The notion of “large”
in this context depends on the particular application, and
especially the difficulty of either appropriately observing or
calculating the system output corresponding to any single
specification of all of the input variables. For example, in the
case of semiconductor materials (e.g., the quaternary compound
GaxIn1-xAsySb1-y which is of two dimensions,x and y), the
system dimension is low, but the time and cost for synthesizing
even a single sample can be quite high. The search for
pharmaceuticals is generally of a similar nature involving low
numbers of variables (i.e., the number of sites for functional-
ization on a molecular scaffold), but the number of moiety
values for each of these variables can be very large, ranging up
to 102 or more. In this case, making one potential pharmaceutical
molecule may be easy, but making all relevant possibilities gets
out of hand. In other problems, the number of variables involved
can be inherently large, and one example occurs when the input

is a function and good sampling resolution is required, thereby
leading to hundreds or more discretized input variables.

Regardless of the circumstance, these IO problems become
challenging, as the numbers of samples (i.e., whether experi-
ments or modeling calculations) over the input variable space
rise to reveal the essential structure of the IO mapping. The
potential scope of such problems may be understood for a
system withn variablesx ) (x1, x2, ..., xn). For simplicity, here
we may consider each variablexi to run over the same number
of discrete values (xi1, xi2, ..., xisi), such thatsi ) s, for all i, and
it is evident that the input variable space is covered by a grid
of sn points. Considering thats could be 10 or more in many
cases, and thatn could even be hundreds in some systems,
reveals the very daunting task of thoroughly exploring typical
realistic input variable spaces in chemical/physical systems. This
apparent exponential growth in exploration effort is sometimes
referred to as the “curse of dimensionality”, and it produces a
longstanding function mapping problemx f f wheref(x) ) f
(x1, x2, ...,xn), n . 1, andf(x) is a system observable output of
interest. Problems of this nature occur in virtually all areas of
science and engineering, as well as other disciplines where
similar levels of possible exponential difficulty loom as
roadblocks to the exploration of the full input variable space to
an acceptable degree of resolution and quality.

The fundamental question is whether the effort of determining
physically based IO mappings is expected to typically scale
exponentially in difficulty, or possibly in a more attractive, less
dramatic fashion. Fortunately, there is ample evidence suggest-
ing that much more reasonable scaling should often exist as
the number of variablesn rises. This fortunate circumstance
seems to occur ubiquitously for a number of reasons. In the
limit of a totally irregular IO mappingx f f, then an
exponentially growing number of samplessn will be needed.
The notion of irregular here means that every pointx could
produce distinctly unrelated output behavior to that of other even
nearby points. Thus, it is crucial whether the systemf(x) contains
identifiable regular structure with respect to the space of
variablesx ) (x1, x2, ..., xn). In practice, highly irregular IO
maps often do not occur, and to appreciate this comment, it is
most useful to view the breadth of IO behavior in terms of the
degree of cooperativity (or correlations) among the input
variablesx ) (x1, x2, ..., xn) for their impact uponf(x). In this
sense, a hierarchy can be envisioned, starting with the variables
acting independently (but still possibly nonlinearly) of each other
for their impact onf, and then in all possible pairs for their
impact, in all possible triples for their impact, etc., finally to
the highestnth level of inseparable cooperativity among all of
the input variables. The extent of high order variable cooper-
ativity depends on the choice of input variables; there is much
freedom in this choice for any system. In any application, there
is a natural predilection to choosing the chemical/physical input
variables so that they act as independently as possible, and this
fact alone naturally leans toward the existence of a limited
degree of input variable cooperativity uponf in the hierarchy
discussed above.

Perhaps the strongest generic evidence for the typical lack
of high order input variable cooperativity can be found in the
overwhelming body of statistical analysis data of many systems,
where it is rarely found that more than covariances (i.e.,
cooperativity orderl ) 2) are necessary to describe the input
multivariate contributions to virtually any system output. In the
extreme limit of the input variables acting totally independently
(i.e., cooperativity orderl ) 1), although not necessarily linearly,
the number of runs or experiments necessary to learn the IO
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map of the system will scale as∼ns, and similarly, atl ) 2,
the scaling will be∼(ns)2. Thus, the degree of cooperativity
among the input variables is crucial for determining the true
scaling or complexity required to learn system IO response
behavior. As a special case, chemical systems described at the
atomic and molecular level are naturally dominated by few-
body interactions, which is fully consistent with the same low
order variable cooperativity behavior. Perhaps, most surprising
is the apparently ubiquitous dominance of low order input
variable cooperativity across science and engineering, at length
scales beyond atomic dimensions.

Every chemical/physical problem will have its own charac-
teristics in terms of the degree of variable cooperativity present,
and the premise of HDMR is that realistic well-defined systems
are dominated by low order behavior such thatl , n. Accepting
this premise, the key issue is how to exploit this behavior for
translation into specific algorithms to guide the taking of
laboratory or simulation data and the representation of the
system IO in a physically transparent and quantitatively
convenient fashion. In this manner, forl , n, the goal is to
perform a modest number of experiments or model runs while
still retaining full fidelity of the IO map throughout the input
variable space. This problem, addressed by HDMR, can be
viewed as interpolation of the system output throughout the input
variable space, which is possibly of very high dimensionn. A
broad literature exists on function representations,1-10 and the
present paper will focus on HDMR, as ample reviews exist
including a discussion on the background to HDMR. Section 2
below will discuss the mathematical and algorithmic IO
representation problem, followed by a summary of various
aspects of HDMR. Section 3 will present several chemical/
physical illustrations of HDMR on problems ranging from
dimensionn ) 2 to n ) 1000 in order to give a sense of the
scope and power of the concepts. The motivation in all
applications of HDMR ultimately reduces to matters of ef-
ficiency and speed, both for learning IO mappings as well as
exploiting them for subsequent optimization or other purposes.
Section 4 will present some summarizing comments on this
topic, which is still under active development.

2. HDMR Formulations

Many problems in science and engineering reduce to finding
an efficiently constructed map of the relationship between sets
of high dimensional system input and output variables. The
system may be described by a mathematical model (e.g.,
typically a set of differential equations), where the input
variables might be specified initial and/or boundary conditions,
parameters or functions residing in the model, and the output
variables would be the solutions to the model or a functional
of them. The IO behavior may also be based on observations
in the laboratory or field where a mathematical model cannot
readily be constructed for the system. In this case the IO system
is simply considered as a black box where the input consists of
the measured laboratory or field (control) variables and the
output(s) is the observed system response. Regardless of the
circumstances, the input is often very high dimensional with
many variables even if the output is only a single quantity. We
refer to the input variables collectively asx ) (x1, x2, ..., xn)
with n ranging up to∼102-103 or more, and the output asf(x).
For simplicity in the remainder of the paper and without loss
of generality, we shall refer to the system as a model regardless
of whether it involves modeling, laboratory experiments or field
studies.

2.1. Theoretical Foundations of HDMR.High dimensional
model representation (HDMR) is a general set of quantitative

model assessment and analysis tools11-15 for capturing high
dimensional IO system behavior. As the impact of the multiple
input variables on the output can be independent and coopera-
tive, it is natural to express the model outputf(x) as a finite
hierarchical correlated function expansion in terms of the input
variables:

where the zeroth-order (i.e.,l ) 0) component functionf0 is a
constant representing the mean response tof(x), and the first
order (i.e.,l ) 1) component functionfi(xi) gives the independent
contribution tof(x) by the ith input variable acting alone, the
second order (i.e.,l ) 2) component functionfij(xi, xj) gives
the pair correlated contribution tof(x) by the input variablesxi

andxj, etc. The last termf12...n(x1, x2, ...,xn) contains any residual
nth order correlated contribution of all input variables. The above
HDMR expansion has a finite number of terms and is always
exact. Other expansions have been suggested,16 but they
commonly have an infinite number of terms with some specified
functions (e.g., Hermite polynomials).

The basic conjecture underlying HDMR is that the component
functions in eq 1 arising in typical real problems are likely to
exhibit only low orderl cooperativity among the input variables
such that the significant terms in the HDMR expansion are
expected to satisfy the relation:l , n for n . 1. Experience
shows that an HDMR expansion to second order

often provides a satisfactory description off(x) for many high
dimensional systems when the input variables are properly
chosen. HDMR attempts to exploit this observation to efficiently
determine high-dimensional IO system mapping. The presence
of only low order variable cooperativity does not necessarily
imply a small set of significant variables nor does it limit the
nonlinear nature of the IO relationship. Figure 1 gives an
example of typical first and second-order HDMR component
functions which reveal the nonlinear relationships between
model inputs and outputs.

2.1.1. Optimization Procedures to Determine HDMR Com-
ponent Functions.Exploiting the expected low order variable
cooperativity in high dimensional systems can only be done if
practical formulations of the HDMR component functions can
be found. The HDMR expansion component functionsf0, fi(xi),
fij(xi, xj), ... are optimally tailored to each particularf(x) over
the entire domainΩ of x. A component functionfi1i2...il(xi1, xi2,
..., xil) (l ) 0, 1, ..., n - 1 with f0 corresponding tol ) 0) is
obtained by minimizing the functional

under a suitable specified orthogonality condition which guar-

f(x) ) f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) +

∑
1ei<j<ken

fijk(xi, xj, xk) + ... +

∑
1ei1<...<ilen

fi1i2...il(xi1
, xi2

, ...,xil
) + ... + f12...n(x1, x2, ..., xn) (1)

f(x) ≈ f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) (2)

min
fi1i2...il

∫Ω
wi1i2

...il(x̂, u)[f(u) - f0 - ∑
i)1

n

fi(ui) -

∑
1ei<jen

fij(ui, uj) - ... - ∑
1ei1<...<ilen

fi1i2...il(ui1
, ui2

, ..., uil
)]2 du

(3)
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antees that all the component functions are determined step-
by-step. Here,x̂ ) (xi1, xi2, ..., xil), du ) du1du2...dun, and
wi1i2...il(x̂,u) is a weight function.

Different weight functions will produce distinct, but formally
equivalent HDMR expansions, all of the same structure as eq
1. There are two commonly used HDMR expansions: Cut- and
RS(Random Sampling)-HDMR. Cut-HDMR expressesf(x) in
reference to a specified cut pointxj in Ω, while RS-HDMR
depends on the average value off(x) over the whole domain
Ω.

1. Cut-HDMR. For Cut-HDMR a reference pointxj is first
chosen in then-dimensional input variablex space. When Cut-
HDMR is taken to convergence, the representation off(x) is
invariant to the choice ofxj. In practical circumstances it can
be wise to choosexj within the neighborhood of interest in the
input space.

The Cut-HDMR component functions with respect to refer-
ence pointxj have the following forms:

where

The last termf12...n(x1, x2, ..., xn) in eq 1 is determined by the
difference betweenf(x) and all other Cut-HDMR component
functions.

The above formulas can be readily obtained from eq 3 or
simply by substituting (xi1, xi2, ..., xil, xji1i2...il) with different sets
of {i1, i2, ..., il} ⊂ {1, 2, ..., n} for x on the both sides of eq 1
and using the following specified condition: a component
function of Cut-HDMR vanishes when any of its own variables
takes the value of the corresponding element inxj, i.e.,

Equation 9 serves to define an orthogonal relation between two
different component functions of Cut-HDMR as

The Cut-HDMR component functionsfi(xi), fij(xi, xj), ... are
typically attained numerically at discrete values of the input
variablesxi, xj, ... produced from sampling the output function
f(x) for employment on the right-hand side of eqs 4-6. Note
that the Cut-HDMR component functions are defined alongcut
lines, planes, subvolumes, etc., through the reference pointxj
in Ω.

Since all the Cut-HDMR component functions satisfy a
minimization condition in eq 3, they are optimal choices for a
given outputf(x). Experience shows that often only low order
terms of Cut-HDMR are needed to give a good approximation
for f(x). Numerical data tables can be constructed for these
component functions, and the values off(x) for an arbitrary point
x can be determined from these tables by performing only low
dimensional interpolation overfi(xi), fij(xi, xj), ... . If each input
variable is sampled ats different values (with the cut center
being one evaluation point), the required number of model runs
to construct thefi(xi), fij(xi, xj) ... tables is

which grows only polynomically withn and s. The sample
savings for largen are significant compared to traditionalsn

sampling. Thus, Cut-HDMR renders the original exponential
difficulty to a problem of only polynomic complexity.

2. RS-HDMR. For RS-HDMR, we first rescale variablesxi

such that 0e xi e 1 for all i. The output functionf(x) is then
defined in the unit hypercubeKn ) {(x1, x2, ..., xn)|0 e xi e 1,
i ) 1, 2, ..., n} by suitable transformations. The component
functions of RS-HDMR possess the following forms:

where dui and duij are just the product du1du2...dun without dui

and duiduj, respectively. Finally, the last termf12...n(x1, x2, ...,
xn) is determined from the difference betweenf(x) and all the
other lower order component functions in eq 1.

Figure 1. The functional behavior of typical (above) first- and (below)
second-order HDMR component functions from a bioremediation model
for a uranium soil contamination site.17 Here the input variablesxi and
xj are rate constants in the model, and the outputf is the accumulated
flux of uranium U4+passing through a given depth from the soil surface.
This nonlinear behavior is typical of many chemical/physical models.

f0 ) f(xj) (4)

fi(xi) ) f(xi, xji) - f0 (5)

fij(xi, xj) ) f(xi, xj, xjij) - fi(xi) - fj(xj) - f0 (6)

......

(xi, xji) ) (xj1, ...,xji-1, xi, xji+1, ...,xjn) (7)

(xi, xj, xjij) ) (xj1, ...,xji-1, xi, xji+1, ...,xjj-1, xj, xjj+1, ...,xjn) (8)

fi1i2...il(xi1
, xi2

, ...,xil
)|xs ) xjs

) 0, s∈ {i1, i2, ..., i l} (9)

fi1i2...il(xi1
, xi2

, ...,xil
)fj1j2...jk(xj1

, xj2
, ...,xjk

)|xs ) xjs
) 0

s∈ {i1, i2, ..., i l} ∪ {j1, j2, ..., jk} (10)

1 + n(s - 1) +
n(n - 1)(s - 1)2

2
+ ...

f0 ) ∫Knf(u) du (11)

fi(xi) ) ∫Kn-1f(xi,u
i) dui - f0 (12)

fij(xi, xj) ) ∫Kn-2f(xi, xj, uij) duij - fi(xi) - fj(xj) - f0 (13)

......
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Considering that the domainΩ is a unit hypercube,f0 is the
average value off(x) over the whole domain in contrast withf0
of Cut-HDMR, which is the value off(x) at the specified single
reference pointxj.

All the above formulas can be readily obtained from eq 3 or
simply by integrating both sides of eq 1 with respect to different
sets of input variables{xi1, xi2, ..., xil} (l ) n, n - 1, ..., 1), and
using the following specified condition: the integral of a
component function of RS-HDMR with respect to any of its
own variables is zero, i.e.,

which defines the orthogonality relation between two different
RS-HDMR component functions as

Evaluation of the high dimensional integrals in the RS-HDMR
expansion may be carried out by Monte Carlo random sam-
pling,18 and hence the name RS(random sampling)-HDMR.

According to the above formulas one can see that all the
component functions of the Cut- and RS-HDMR expansions
can be directly constructed from the values of outputf(x) either
at ordered or randomly sampled points ofx, which makes the
determination off0, fi(xi), fij(xi, xj), ... straightforward.

2.1.2. HDMR Component Functions Obtained from Orthogo-
nal Projection Operators.To attain a better understanding of
the HDMR expansions, we may view the concept from another
perspective. The component functions of an HDMR can be
obtained through application of a suitably defined set of linear
operatorsp0, pi (i ) 1, 2, ..., n), pij(1 e i < j e n), ...

Equations 4-6 and eqs 11-13 reveal the corresponding
definitions of the operators for the Cut- and RS-HDMR
component functions, respectively. It has been proven that all
the operators for the Cut- and RS-HDMR expansions are
commutative projection operators and they are mutually or-
thogonal to one another,12 i.e., they obey 1. idempotency,

where 0e l e n, andp0 corresponds tol ) 0; 2. orthogonality,

and 3. resolution of the identity,

where1 denotes the identity operator.
The projectors act on a linear spaceF composed of all

n-variable functionsf(x). Each projectorpt provides an ap-
proximation ptf(x) for f(x), and has its rangeΦt which is a

subspace of the linear spaceF. Any function f(x) ∈ Φt is
invariant upon the action ofpt, i.e.,

This implies that upon the action ofpt there is no error for any
function f(x) ∈ Φt. The larger the rangeΦt is, the better
approximationpt produces forF.

Two projectorspi andpj are mutually orthogonal if

This is equivalent to

A sum of two mutually orthogonal projectorspi + pj is also a
projector whose range isΦi + Φj which is larger than either
Φi or Φj. Therefore,pi + pj will produce an approximation for
F with better accuracy than provided by either single operator
pi andpj.

Any set of commutative projectors generate adistributiVe
latticewhose elements are obtained by all possible combinations
(Boolean addition and multiplication) of the projectors in the
set.19 In particular, the lattice has a uniquemaximalprojector
M which provides the algebraically best approximation toF.
The range of the maximal projectorM for the lattice generated
by mutually commutative projectors{p1, p2, ..., ps}is the union
of all the rangesΦt, i.e.,

When the projectors are mutually orthogonal, the maximal
projector is simply their sum

and the rangeΦM is ∑i)1
s Φi. When more orthogonal projectors

are retained in the set, the resultant approximation toF obtained
by its maximal projectorM becomes better.

As an example, if we choose the subsetS1 ) {p0, pi(i ) 1, 2,
..., n)} of the above mutually orthogonal projectors to generate
a lattice, its maximal projector is simply the sum of all these
projectors:

and the best approximation off(x) ∈ F by the projectors in this
lattice is

which is the first-order HDMR approximation forf(x). Similarly,
for the subsetS2 ) {p0, pi(i ) 1, 2, ..., n), pij(1 e i < j e n)},
the best approximation off(x) ∈F is given by

which is the second-order HDMR approximation forf(x), and
so on.

∫0

1
fi1i2...il(xi1

, xi2
,...,xil

) dxs ) 0, s∈ {i1, i2, ..., i l} (14)

∫Knfi1i2...il(xi1
, xi2

,...,xil
)fj1j2...jk(xj1

, xj2
,...,xjk

) dx ) 0

{i1, i2, ..., i l} * {j1, j2, ..., jk} (15)

p0 f(x) ) f0 (16)

pi f(x) ) fi(xi) (17)

pij f(x) ) fij(xi, xj) (18)

pi1i2...il

2 ) pi1i2...il
, {i1, i2, ..., i l} ⊂ {1, 2, ...,n} (19)

pi1i2...il
pj1j2...jk

) 0. {i1, i2, ..., i l} * {j1, j2, ..., jk} (20)

∑
l)0

n

∑
1ei1<...<ilen

pi1i2...il
) 1 (21)

ptf(x) ) f(x), ∀f(x) ∈ Φt (22)

pipj ) pjpi ) 0 (23)

Φi ∩ Φj ) 0 (24)

ΦM ) Φ1 ∪ Φ2 ∪ ... ∪ Φs (25)

M ) ∑
i)1

s

ps (26)

M1 ) p0 + ∑
i)1

n

pi (27)

f(x) ≈ M1 f(x) ) p0 f(x) + ∑
i)1

n

pi f(x) ) f0 + ∑
i)1

n

fi(xi) (28)

f(x) ≈ M2 f(x) ) p0 f(x) + ∑
i)1

n

pi f(x) ∑
1ei<jen

pij f(x) )

f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) (29)
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As S1 is a subset ofS2, andM2 is the maximal projector in
the lattice generated byS2, thenΦM1 ⊂ ΦM2 andM2 is better
thanM1, i.e., the second-order approximation of HDMR is better
than the first-order one. This implies that adding a new
orthogonal projector into a sum of orthogonal projectors always
produces a new projector with better accuracy. Finally, as the
sum of all projectors of the HDMR expansion is the identity,
the full HDMR expansion is exactly equal tof(x).

It can be readily proven that the range for projectorp0 + pi

is any constant and any function of variablexi, and the range
for p0 + ∑i)1

n pi is any constant and any linear combination of
functions with one variablexi(i ) 1, 2, ..., n). Similarly, the
range for projectorp0 + ∑i)1

n pi + ∑1ei<jen pij is any constant
and any linear combination of functions with one or two
variablesxi, xj (1 e i < j e n). This property can be employed
to identify error free regions inx space for different order Cut-
HDMR approximations.12,13As f(xi,xji) is a one variable function,
it is invariant to the projectorp0 + ∑i)1

n pi, i.e., there is no error
for the first order Cut-HDMR approximation off(x) whenever
the pointx is located on a cut line through the reference point
xj in Ω. Similarly, f(xi, xj, xjij) is a two variable function, and
thus there is no error for the second order Cut-HDMR
approximation off(x) whenever the pointx is located on any
cut line or plane through the reference pointxj in Ω. In summary,
there is no error for thelth order Cut-HDMR approximation of
f(x) whenever the pointx is located in anyk(k e l)-dimensional
subvolume across the reference pointxj in Ω.

2.2. Properties of HDMR Expansions.2.2.1. Fast ConVer-
gence of HDMR Expansions.As mentioned above, HDMR
expansions have been observed to converge fast in realistic
applications. The origin of this property can be understood from
the following analysis. Suppose an outputf(x) defined in a unit
hypercube ofx can be expanded as a convergent Taylor series
at reference pointxj, i.e.,

This Taylor expansion can be used to give clear mathematical
meaning to the Cut-HDMR component functions. According
to the definitions off0, fi(xi), fij(xi, xj), ... given in eqs 4-6, it is
easy to prove thatf0 ) f (xj), i.e., the constant term of the Taylor
series. Sincefi(xi) ) f (xi, xji) - f(xj), substituting (xi, xji) for x
and subtractingf(xj) from the both sides of eq 30 givesfi(xi).
As all the terms containingxj(j * i) vanish, the first-order
component functionfi(xi) is the sum ofall the Taylor series
terms which only contain variablexi. Similarly, the second-
order component functionfij(xi, xj) is the sum ofall the Taylor
series terms which only contain both variablesxi and xj, etc.
Thus, the infinite number of terms in the Taylor series are
partitioned into a finite number of distinct groups, and each
group (still containing an infinite number of terms) corresponds
to one Cut-HDMR component function, i.e., each component
function of Cut-HDMR is composed of an infinite subclass of
the full multidimensional Taylor series. Therefore, a truncated
Cut-HDMR expansion is likely to give a better approximation
of f(x) than any truncated Taylor series because the latter only
contains a finite number of terms. Furthermore, considering that
0 e xi e 1 (i ) 1, 2, ...,n) and (xi - xji) < 1, the high order
Cut-HDMR component functions are usually smaller than low
order ones because the high order component functions involve

the product∏s)1
l (xis - xjis)ks with larger l. Moreover, if the

higher order derivatives have complex structure, especially with
sign changes over their indicesxji, xjj, ..., then random phase
arguments further suggest that the higher order HDMR com-
ponent functions will tend to be small. Evidence supports this
qualitative behavior, although there is no rigorous proof of the
behavior.

Each of the subclasses of the Taylor series corresponding to
different component functions of Cut-HDMR do not overlap
one another, which is the basis for the orthogonal relation
between two Cut-HDMR component functions. Other HDMR
expansions possess the same property as Cut-HDMR because
a one-to-one relationship between two different HDMR expan-
sions can be established. Thus, if Cut-HDMR converges at
certain order, so do the other HDMR expansions.12

2.2.2. InVariance of ConserVation Laws for HDMR Ap-
proximations.If a set of physical outputs{f(1)(x), f(2)(x), ..., f(s)-
(x)} obey a set of linear-superposition conservation laws, their
HDMR approximations at any order also obey these conserva-
tion laws,12 i.e., if

where{wki} and{ck} are two sets of constants, then

here

andMl f(i)(x) denotes thelth order HDMR approximation for
f(i)(x). This property can be proven by applying operatorMl to
the both sides of eq 31 and using the identity

The invariance of conservation laws is very useful for the
application of HDMR in physics, chemistry and other disciplines
where conservation laws (e.g., mass, energy, momentum
conservations, etc.) are important.

2.2.3. Decomposition of System Variance by RS-HDMR.
Using the orthogonality property of the RS-HDMR component
functions, it can be proven that the total varianceσfh

2 of f(x)
caused by all input variables sampled uniformly over their full
range may be decomposed into distinct input contributions in
the following manner.12

where fh is the mean value off(x) over the whole domainΩ.
Thus, the total varianceσfh

2 is the sum of first-order variances

f(x) ) f(xj) + ∑
i)1

n ∂f(xj)

∂xi

(xi - xji) +

∑
i,j ) 1

n 1

2!

∂
2f(xj)

∂xi∂xj

(xi - xji)(xj - xjj) + ... (30)

∑
i)1

s

wki f(i)(x) ) ck, k ) 1, 2,...,m (31)

∑
i)1

s

wki[Ml f(i)(x)] ) ck, k ) 1, 2, ...,m; l ) 0, 1, ...,n (32)

Ml ) p0 + ∑
i)1

n

pi + ... + ∑
1ei1<...<ilen

pi1
pi2

... pil
(33)

Ml c ) c, c being a constant (34)

σfh
2 ) ∫Kn[f(x) - fh]2 dx ) ∫Kn[f(x) - f0]

2 dx )

∫Kn[ ∑
i ) 1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) + ...]2 dx

) ∑
i)1

n ∫0

1
fi
2(xi) dxi + ∑

1ei<jen
∫0

1 ∫0

1
fij
2(xi, xj) dxi dxj + ...

) ∑
i ) 1

n

σi
2 + ∑

1ei<jen

σij
2 + ... (35)
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σi
2, second-order covariancesσij

2, etc. This property is useful
for global uncertainty analysis because the above decomposition
is valid over the whole domain. The magnitudes of the indices
σi

2, σij
2, etc., reveal how the output uncertainty is influenced by

the input uncertainties and the nature of the cooperativities that
exist. These multivariate indices are nonlinear analogues of the
usual statistical moments for multivariance analysis. The fact
that covariances are often adequate to describe multivariate
system statistics is also supportive of the fast convergence of
the HDMR expression.

2.3. Approximate and Extended HDMR.2.3.1 Approximate
Formulas for RS-HDMR Component Functions.The direct
determination of the component functions of RS-HDMR at
different values ofxi, xj, ... by Monte Carlo integration can
require a large number of random samples. For instance, distinct
Monte Carlo random samples forf(xi, xji)at different fixed values
of xi are needed to determinefi(xi) in eq 12.20 To reduce the
sampling effort, the RS-HDMR component functions may be
approximated to any desired level of accuracy by the following
two means.

1. Analytical Approximation. The RS-HDMR component
functions may be approximated by expansion in terms of a
suitable set of functions, such as orthogonal polynomials, spline
functions, or even simply polynomial functions,15

whereRr, ârs are constant coefficients, andPr(xi), Prs(xi, xj) are
one- and two-variable bases. Assuming that the functions are
orthogonal, the coefficients are given by

As no restriction is posed on the values of the elements ofx
for f(x) in the above integrals, only one set of random samples
for f(x) are necessary to determine all the coefficients, and
consequently all the component functions of RS-HDMR. The
sampling effort is then dramatically reduced.

2. Numerical Approximation. The RS-HDMR component
functions may be also approximated numerically by using
reproducing kernels or filters. These kernels can be used to
reduce the sampling burden as well as to act as a filter with
noisy input dataf(x). For instance, the first- and second-order
RS-HDMR component functions are given by

wherek(xi; ui) andk(xi, xj; ui, uj) are reproducing kernels.21,22

Similarly, as no restriction is posed on the values of the elements
of u for f(u) in the above integrals, only one set of random

samples forf(x) are necessary to determine all the component
functions of RS-HDMR at different values of the elements of
x.

2.3.2. Monomial Preconditioning Cut-HDMR.As argued
earlier, very often the high order HDMR terms are small thereby
making low (usually, first and second) order HDMR ap-
proximations satisfactory for practical purposes. However, in
some cases the first- or second-order HDMR approximations
may not provide the desired accuracy, and higher order HDMR
approximations might have to be considered. For Cut-HDMR,
the higher order terms demand a polynomically increasing
number of data samples and possibly large computer storage.
If the higher order component functions of Cut-HDMR can be
approximately represented in a similar fashion as those for the
zeroth-, first-, and second-order component functions, then
higher order approximations of Cut-HDMR can be included
without dramatically increasing the number of experiments or
model runs as well as reducing computer storage requirements.
One way to realize this concept is to represent a high order
Cut-HDMR component function as products of low order Cut-
HDMR component functions and some suitable functions of
the remaining input variables. For instance, a third-order Cut-
HDMR component function can be approximated as

whereæi(xi), æj(xj), ..., æijk(xi, xj, xk) are suitable known functions
(e.g., the products of monomials (xi - bi), (xj - bj) and (xk -
bk) where theb’s are constants), andfh0, fhi(xi), ..., fhjk(xj, xk) are
Cut-HDMR component functions for some given functionfh(x)-
related tof(x). Thus, the three-dimensional numerical table for
fijk(xi, xj, xk) is replaced by some one- and two-dimensional
numerical tables. The saving is large, especially for high order
component functions. Using projector theory, an approach
referred to asmonomial preconditioningCut-HDMR has been
developed for this purpose.23,24

2.3.3. Multi-Cut-HDMR.The basic principles of HDMR may
be extended to more general cases. Multi-Cut-HDMR is one
extension where severallth order Cut-HDMR expansions at
different reference pointsa(1), a(2), ..., a(m) are constructed,
and f(x) is approximately represented not by one but by all
m Cut-HDMR expansions:

The coefficientswk(x) possess the properties

The properties of the coefficientswk(x) imply that the contribu-
tion of all other Cut-HDMR expansions vanish except one when

fi(xi) ≈ ∑
r ) 1

k

RrPr(xi) (36)

fij(xi, xj) ≈ ∑
r)1

l

∑
s)1

l

ârsPrs(xi, xj) (37)

Rr )
∫Knf(x)pr(xi) dx

∫0

1
pr

2(xi) dxi

(38)

ârs )
∫Knf(x)prs(xi, xj) dx

∫0

1∫0

1
prs

2 (xi, xj) dxi dxj

(39)

fi(xi) ) ∫Knf(u)k(xi; ui) du - f0 (40)

fij(xi, xj) ) ∫Knf(u)k(xi, xj; ui, uj) du - fi(xi) - fj(xj) - f0 (41)

fijk(xi, xj, xk) ≈ æijk(xi, xj, xk) fh0 + æjk(xj, xk) fhi(xi) +
æik(xi, xk) fhj(xj) + æij(xi, xj) fhk(xk) + æk(xk) fhij(xi, xj) +

æj(xj) fhik(xi, xk) + æi(xi) fhjk(xj, xk) (42)

f(x) ) ∑
k)1

m

wk(x)[f0
(k) + ∑

i ) 1

n

fi
(k)(xi) + ... +

∑
1ei1<i2<...<ilen

fi1i2...il
(k) (xi1

, ...,xil
)] (43)

wk(x) )

[1 if x is in any cut subvol of thekth point expansions
0 if x is in any cut subvol of other point expansions]

(44)

∑
k)1

m

wk(x) ) 1 (45)
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x is located on any cut line, plane, or higher dimensional (el)
subvolumes through that reference point, and then the Multi-
Cut-HDMR expansion reduces to single point Cut-HDMR
expansion. As mentioned above, thelth order Cut-HDMR
approximation does not have error whenx is located on these
subvolumes. Whenm Cut-HDMR expansions are used to
construct a Multi-Cut-HDMR expansion, the error free region
in input x space ism times that for a single reference point
Cut-HDMR expansion. Therefore, the accuracy will be im-
proved.

There are a variety of choices to definewk(x). For example,
the metric distancesFk

i1i2...il from point x to an l-dimensional
subvolume with variables{xi1, xi2, ..., xil} through reference point
a(k) (k ) 1, 2, ..., m)

can be used to define

It can be readily proven that the definedwk(x) satisfies the
required properties if different reference pointsa(k) do not share
any coordinate. When thea(k)’s have the same values for some
elements, modified definitions forwk(x) may be used.

2.3.4. HDMR with Discrete Input Variables.HDMR can treat
discrete as well as continuous input variables. The notion of
inherently discrete variables refers to those that are naturally
discrete (e.g., molecular moieties functionalized on a scaffold).
A potentially serious difficulty in treating inherently discrete
variables arises since often there is no a priori means to order
the input data. There is a means for handling this problem within
HDMR,25 and the discrete input variable capabilities of HDMR
have been successfully tested recently with protein mutations
where the discrete variables are the amino acid residues (see
section 3.2).

2.3.5. Functional HDMR.If inputs for a system consist of a
set of functions, i.e., the input vectorx(t) ) (x1(t), x2(t), ..., xn-
(t)), then the system output becomes a functional. One approach
to this functional mapping problem is to assume a discretization
of the following form

where{φk(t)} is a family of orthogonal functions. Then any
“functional” becomes a “function” of the parameterscik, and
the standard HDMR formulas are applicable.12 This approach
has been successfully implemented for a quantum scattering
problem (see section 3.4) and an atmospheric radiative heating
problem (see section 3.8).

3. Illustrations of High Dimensional Model Representation

At this stage of HDMR development, much of the activity is
focused on testing the capabilities of the concepts and algorithms

for realistic applications. This emphasis serves the dual purpose
of exploiting HDMR for current problems of interest, as well
identifying new algorithmic areas that need further development.
This section will present a short synopsis of a variety of
applications, spanning atomic and molecular phenomena up
through macroscopic and environmental processes. Some of
these applications have now been published while others are in
press and some are awaiting documentation. Given the space
limitations here, only a brief description of each application will
be presented, and the interested reader is referred to the cited
references and forthcoming works for complete details. The
scope of the illustrations below will also indicate the breadth
of applicability of HDMR.

3.1. Chemical Formulations.A common materials problem
is the preparation of formulations (i.e., mixtures) withn
component variablesx ) (x1, x2, ...,xn) which are mole fractions
implying the constraint∑i)1

n xi ) 1. A physical output property
f(x) may often have many input componentsn . 1, and the
output can depend on the componentsx in a nonlinear fashion.
Often, optimization off(x) over x is desired and this is an
especially challenging task for largen, when each sample is
expensive to make and/or test. Furthermore, additional con-
straints may also exist among some groupings of the chemical
components, corresponding, for example, to miscibility criteria
or material cost limitations, etc. Minimally, there will be the
single total mass fraction constraint that defines a volume in
the composition hypercube of dimensionn - 1, such that 0e
∑i)1

n-1xi e 1. At first sight, this constraint would seem to cause
considerable difficulty in exploring the composition input space,
as the variables are mutually constrained. However, mitigating
this difficulty is the fact that the physically accessible composi-
tion volume occupied in the unit hypercube goes down as 1/(n
- 1)!. Furthermore, the mean distance between any two arbitrary
points in the volume also shrinks as∼1/xn. Thus, viewed
from an interpolation point of view, this is an ideal circumstance,
as the overall accessible space is shrinking primarily to a region
around the origin, with thin narrow “fingers” shooting out the
variable axes toward each of the limitsxi f 1, i ) 1, ...,n -
1. The fact that any two points in the space become increasingly
close asn rises suggests that an HDMR of a chemical
formulation, truncated to any order, should become more
accurate asn rises, a result that first may appear to be surprising.
This behavior was confirmed through simulations in up ton )
20 dimensions, using both Cut-HDMR sampling on the surface
of the chemically reachable volume and with RS-HDMR
operating on the interior of the volume. Random sampling
techniques may also effectively treat additional constraints
among the input chemical component variables. The ability of
HDMR to readily capture the IO behavior of complex multi-
component mixtures in high dimensions may have significant
implications for accelerating the search for successful materials
formulations.

A simple mixture formulation illustration occurs for quater-
nary semiconductors AxB1-xCyD1-y of overall dimensionn )
4 (e.g., GaxIn1-xPyAs1-y). A problem of this type actually
corresponds to two coupled and constrained mixture problems
(i.e, AxB1-x and CyD1-y), each of two dimensions, resulting in
an overall formulation with dimension 2 when taking into
account the dual mass fraction constraints. A number of
semiconductor cases have been explored using laboratory one-
dimensional ternary data with Cut-HDMR to estimate the
quaternary compound electronic band gap as an output property.
Tests of this type have proved to be quite successful, with

Fk
i1i2...il(x) ) [ ∑

i)1
i∉{i1,i2,...,il}

n

[xi - ai(k)]2]1/2 {i1, i2, ..., i l} ⊂

{1, 2, ...,n} (46)

wj k(x) ) ∏
s)1
s*k

m

∏
1ei1<...<ilen

Fs
i1i2...il(x) (47)

wk(x) )
wj k(x)

∑
s ) 1

m

wj s(x)

(48)

xi(t) ) ∑
k)1

Ni

cikφk(t) (49)
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quaternary band gap errors typically on the range of 1-3% over
the accessible composition space.13,26,27

3.2. Protein Engineering Through Mutations. There is
much interest in the artificial mutation of proteins, to both
understand the role of the amino acid residues at individual
backbone sites, and especially for engineering purposes, to create
tailored proteins with enhanced or specialized functional proper-
ties for biomedical or industrial applications. The variables in
this case are associated with then backbone sites on the protein
chosen for mutation, with each variablexi taking on up tosi )
20 residue values. At worst, the number of mutation experiments
will grow as∼20n, which is a frighteningly large number, asn
could be 10 or more in some cases. Over the past few decades,
many site-directed mutagenesis experiments have been per-
formed on proteins. One general conclusion from these studies
is that observed protein properties, often of a thermodynamic
nature, are dominated by low order cooperativity among the
residues at the various backbone sites. The residues at each site
tend to act dominantly alone as contributors to the observed
protein property along with some degree of pair cooperativity
(i.e., residue-residue cooperative impact on the property), and
perhaps a little residual triple cooperativity in some cases. This
observed dominance of low order cooperativity clearly has its
roots in the few-body nature of intramolecular forces, and it
plays very attractively into the structure of HDMR.

An additional special feature of all molecular discovery
problems is that the variablesx ) (x1, x2, ..., xn) are inherently
discrete, and in the present protein case, each variable takes on
20 values for the natural amino acids. The exploration of protein
mutations for their observed functional response is a problem
of judicious sampling and interpolation of the responsef(x)
throughout thex space. As such, a potentially serious difficulty
arises since there is no a priori means to order the input variable
amino acid residues at each backbone site. Without some
identified rational ordering, the responsef(x) will likely appear
as random over thex space, and this behavior would prevent
an efficient use of coarse sampling for interpolation. A good
ordering of the residue variables at each site is defined as one
that produces well-behaved “smooth” property variationsf(x)-

over the inputx space. The ideal ordering at one site vs another
will surely be different, and the ordering will generally depend
on the particular measured protein property. It appears that a
rational ordering of the variables can be found, based on the
set of single mutations of first order HDMR at each backbone
site. The observed response due to the single mutations at each
site may be used to produce monotonic variation with respect
to a suitable ordering of the residues. It is then natural to expect
that the remaining behavior over the second-, or possibly third-,
order HDMR mutation surfaces will be regular, if not mono-
tonic. This variable ordering is crucial to make feasible coarse
sampling among the mutations, and thereby efficiently employ
HDMR to interpolate between the samples.25 Figure 2 presents
an illustration of the effect of protein mutation reordering with
thermodynamic stability data from the gene V protein.28,29 It is
evident that a simple reordering of the amino acid variables
reveals the regular structure in the mutation space. These data
was taken in vitro, and similar behavior has been seen for in
vivo experimental data in the same protein.

3.3. Pharmaceutical Discovery.The discovery of pharma-
ceuticals, from an HDMR perspective, is a sampling and
interpolation problem analogous to the treatment of protein
mutations in subsection 3.2 above. In this case, the input
variablesx1, x2, ..., xn label the sites for functionalization on
some chosen molecular scaffold, and the variable values label
the discrete moieties considered for functionalization at the sites.
Unlike proteins, the number of input variables or sites is
typically smalln ∼ 2-4, while the number of variable values
(i.e., possible moieties at each site) can be arbitrarily large, often
exceeding 100. In addition, the molecular scaffold itself could
be treated as another variable. The objective is to coarsely
sample this overall input space and interpolate over it so as to
reveal its structure with respect to specific measures of
pharmaceutical activity and other relevant propertiesf(l)(x), l )
1, 2, ... . Typically, the aim is to optimize pharmaceutical activity
in balance with other goals such as minimizing the toxicity or
other induced undesirable physiological processes associated
with the drug. The search effort is also compounded by the fact
that the ideal pharmaceutical may not lie within the original

Figure 2. (Left) Histogram plot of stability data from mutations of the gene V protein at sites I47 and V35, organized as originally presented.28,29

This work, as well as other such double and higher order protein mutation studies, did not reveal underlying regular patterns in the data. Identification
of regular data patterns is essential to permit coarse sampling of mutations for an efficient description of the full space. The mutants colored red
are single site variants referenced to the wild-type cut center. (Right) This figure is a rearrangement of the same data in the left panel. The measured
value of the stability of each single-site mutant labeled in red was utilized to prescribe a monotonic ordering for the efficacy of the amino acids at
each site, thereby revealing the underlying pattern of regular behavior amongst the double mutants.

Feature Article J. Phys. Chem. A, Vol. 105, No. 33, 20017773



subspace of moieties considered, and this circumstance eventu-
ally calls for extrapolation. Presently, such extrapolations
typically are carried out with only an incomplete understanding
of pharmaceutical efficacy throughout the originally defined
subspace of moieties. Without a rationalization and exploration
of the original full subspace, extrapolation can be ineffective,
and possibly lead syntheses down the wrong path, upon
expansion of the subspace. An identification of the true regular
behavior in the original subspace of moieties would provide
the best information for an extrapolation beyond.

A critical component of pharmaceutical discovery with
HDMR, as with protein mutations in subsection 3.2, is the
ordering of the moiety variables in a rational fashion, based on
first-order information on the observed pharmaceutical properties
f(l)(x), l ) 1, 2, ... . It may also occur that each observed property
has its own best moiety orderings.30 Although a full exploitation
of this algorithm has not occurred at this time, the literature on
pharmaceutical activity data does reveal the general dominance
of the first order HDMR contributions. This behavior strongly
suggests that suitable moiety ordering will produce regular
behavior throughout the moiety space in analogy with what has
been observed with protein mutations. Coarse sampling and
interpolation should be key components of any molecular
discovery effort guided by HDMR.

One conclusion from these molecular discovery algorithmic
considerations is that it is essential to perform good quality
functional observationsf(l)(x), l ) 1, 2, ... for reliable interpola-
tion. Although the current practice often involves qualitative
high throughput screening observations, pharmaceutical dis-
covery with HDMR offers the prospect of performing many
fewer candidate syntheses, provided that appropriate good
quality gray scale functional observations are performed to
assess the effectiveness of the pharmaceutical candidates. These
latter comments also apply to all molecular and material
discovery efforts with HDMR.

3.4. Potential Surfaces and Dynamical Observables.In all
applications of molecular dynamics, a general desire is to
understand the influence of potential surface structure upon
system observables, such as cross sections, rate constants, etc.
As an IO mapping problem, the input potentialV(r ) depending
on p coordinatesr ) (r1, r2, ..., rp) is a function and the
observable output is afunctionalof the input. In practice, one
may often discretize the potential at pointsr (l) ) (r1

(l), r2
(l), ...,

rp
(l)), l ) 1, 2, ...,n, in the configuration space to produce a

large number of variablesx ) (x1, x2, ..., xn), where thelth
variablexl ) V(r (l)) is the value of the potential at the particular
point r (l). Consideringxl as an input variable is a meaningful
perspective, as the precise value of the potentialxl ) V(r (l)) at
any pointr (l) is rarely known to high accuracy. In this fashion,
an HDMR may be constructed for each observable, either
through cut or random sampling techniques. Two issues of
concern arise in generating such IO mappings. First, the natural
desire for high resolution of the input potential over the
coordinate spacer implies that the number of variablesn could
be very large, ranging from hundreds to thousands even for
problems of low configuration space dimensionp. In addition,
it is not at first immediately evident whether this definition of
variablesxl ) V(r (l)), l ) 1, 2, ...,n, will inherently lead to low
order cooperativity in the HDMR expansion. There is a special
serendipitous circumstance with HDMR implying that higher
potential spatial resolution (i.e., higher system dimensionn) will
in fact lead to simpler HDMR structure.

To appreciate the latter attractive feature, recall that an output
observable will be a functional of the input potential, and the

potential will appear in the IO map through some possibly
complex layers of integrations. The presence of integrations over
the potential is important, as it implies that thelth local region
of the potential specified byxl ) V(r (l)) should have only a
limited influence on the output, even over a reasonable
dynamical range of its variabilityVmin

(l) e xl e Vmax
(l) . Further-

more, increasing the spatial resolution of the potential surface
will just further contribute to this attractive behavior within
HDMR, to likely produce only low order significant contribu-
tions to the output. Tests of this concept have been carried out
to map atom-atom potentials upon total and differential elastic
scattering cross sections as the output, with the potential
discretized up ton ) 1000 variables over a very broad dynamic
rangeVmin

(l) e xl e Vmax
(l) , l ) 1, ..., n. Figure 3 illustrates the

attained dynamic range exhibiting good accuracy, based on first-
order HDMR with respect to the potential variables and second-
order HDMR coupling between the potential and the scattering
energy, which is also treated as an input variable.31,32

The dynamic range is large, and most of the significant
HDMR component functions are quite nonlinear with respect
to their variables. Random test samples of potentials in the
shaded region of the figure showed that the HDMR could
estimate the cross section for virtually any potential in the
domain, with errors less than 1%. Essentially the same quality
results were obtained with either Cut- or RS-HDMR. The RS-

Figure 3. (A) An illustration of the dynamical range of a functional
Cut-HDMR map for atom-atom scattering.30 Herevj denotes the cut-
center reference potential,δVi(r) andδVj(r) of width 2∆ indicate the
full range of theith and jth HDMR variablesxi ) δVi andxj ) δVj.
The HDMR is first order in the potential variables and second order
with respect to the potential and scattering energy. (B) The HDMR
map over the domain of (A) produces scattering cross sections of high
accuracy for all scattering potentials in the shaded region covering the
main block elements of the periodic table. The error statistics from
100 000 random potentials is shown for the cross sections: elastic
differential σ(θ), elastic integralσT, diffusion σd, and viscosityσV.
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HDMR is more efficient at high values ofn, and this issue
should even be more important for similar multidimensional
potentialf observable HDMR maps.

3.5. Laboratory Data Inversion. Inverse problems are
particularly challenging in virtually any area of science and
engineering, and chemistry is no exception. Invariably, there is
insufficient laboratory data or significant errors in the data to
prevent a unique identification of the underlying model, and
traditional techniques based on linearization procedures typically
produce a single inverted model, giving essentially no indication
of the breadth of possibilities. In practice, all inversion
algorithms call for repeated solution of the system equations of
motion (e.g., the Schro¨dinger equation in the case of quantum
dynamics) in an iterative process. Inputf output maps, such
as generated by HDMR, can be employed in an inverse
algorithm, to act as an equivalent stand-in for the original
equations of motion. HDMRs, due to their use of simple low-
dimensional interpolation, are typically extremely fast to evalu-
ate. This fact, coupled with the ability of genetic-type algorithms
to explore for families of solutions, provides a special capability
for the inversion of chemical/physical data to identify an
underlying family of models consistent with the data.33-35

Although first generating an HDMR for IO mapping entails
some computational overhead, that cost can be acceptable in
many applications compared with the effort of attempting the
same objective of identifying a family of consistent inverse
solutions on the basis of calling up the original system dynamical
equations many times upon each iteration. Considering Figure
3 again, as an example, the broad window of applicability of
the IO HDMR map, when combined with laboratory data, can
identify the family or distribution of potential surfaces consistent
with the data and its quality. A successful simulation of this
type of global inversion was carried out, using total elastic cross
sections as data. The ability of HDMR to aid in the inversion
by providing a family of models consistent with laboratory data
is generic, and should be applicable to other inverse problems
besides scattering.

3.6. Optimal Control of Molecular Motion. There is
considerable interest in the design of optimal laser fields for
implementation in the laboratory to control molecular dynamics
phenomena. The process of optimal design produces a special
type of inverse problem mathematically similar to those in
subsection 3.5, but in this case, the multiplicity of solutions is
an attractive feature for exploitation in laboratory control
applications. Viewed as an inverse problem, the molecular
control objectives are first prescribed, and these objectives are
analogous to the observed data in subsection 3.5. As the
objectives are often few and simple (e.g., breaking a particular
chemical bond), finding some suitable control fieldε(t) presents
a problem that is generally highly underposed leading to the
many possible good control solutions. The goal is to find at
least one of these good solutions. Current laboratory procedures
for this purpose have employed genetic algorithms, using the
actual molecular sample in a closed-loop process. This procedure
has proven successful, but it is also (a) subject to potential
inefficiency as the number of significant input control variables
(i.e., often taken as the control field frequency components) rise
into the hundreds, and (b) no knowledge is gained about the
independent, and especially the cooperative roles of the dis-
cretized spectral phases or amplitudes of the control field. An
HDMR generated from laboratory data with the control field
treated as input and the molecular target as the objective can
address both of these concerns. The ability to treat item (b) is
especially important, as there is basic interest in understanding

the relationship between control field features and dynamical
events. The HDMR decomposition should be capable of
providing insights in this regard, as it inherently is based on
variable cooperativity. Simulations of an HDMR-based control
algorithm has been carried out36-40 on model systems of up to
10 quantum levels; the algorithm presently awaits implementa-
tion in the laboratory.

3.7. Chemical Kinetics Mapping. Reactive flow is an
important feature of many industrial and environmental pro-
cesses. Typically, the modeling of such processes is broken into
pieces, one of which is chemical kinetics (i.e., with the
remaining processes often being mass, momentum, and energy
transport). In many of these applications, the kinetics portion
has grown to be a bottleneck due to the large number of species
involved and the resultant excessive costs of solving the kinetic
differential equations. In the latter circumstance, the chemical
kinetics package in the overall modeling code may be called
upon an enormous number of times during a long-term temporal
calculation. For example, in the case of global stratospheric
chemical modeling over a full year, the chemical kinetics
package may be called upward of∼108 times, considering all
of the spatial cells in the atmosphere and their generally distinct
chemical processes. Currently, practical calculations of this
magnitude are only made feasible by including oversimplified
models of the chemical kinetics, perhaps also performed to less
than the highest accuracy. HDMR offers a special capability as
a IO chemical kinetics map, with the input being initial chemical
concentrations and perhaps other variables (e.g., solar intensity
for photochemical reactions), and the output similarly being
chemical concentrations at a later time. Thus, by repeating this
process for successive times, an HDMR effectively can act as
an integrator, with perhaps a very large time step size. The
potential increased efficiency of an HDMR due to the general
speed of its evaluation, and the large time steps could in turn
allow for the inclusion of enhanced chemical mechanisms. The
generation of test HDMR's for this purpose has been carried
out, both in terms of single box models in the atmosphere, as
well as implementation into full three-dimensional reactive
global circulation modeling. Figure 4 gives the comparison
between the results provided by traditional look-up data table
method and HDMR.41

HDMR map time steps of up to 24 h were successful,
suggesting that this line of development should be fruitful for
further applications. Analogous applications have also been
carried out for optimal control of catalytic methanol conversion
to formaldehyde42 and reactive transport in soil media.17,43 In
the latter case, an HDMR was generated covering the aqueous
chemistry, as well as much of the transport processes.

3.8. Atmospheric Solar Radiation Transport. In conjunc-
tion with the illustration in subsection 3.7, another component
of realistic atmospheric modeling is solar radiation transport.
Solar radiation can drive photochemical kinetics, and this
process would be included in the chemical kinetics HDMR’s
discussed in subsection 3.7. In addition, solar radiation may be
absorbed by trace gases in the atmosphere, ultimately resulting
in atmospheric heating when some of the absorbed radiation is
transferred to molecular translation-rotation-vibration degrees
of freedom through molecular collisions. This solar radiation
energy transfer process is of special concern for issues of global
warming, due to the presence of carbon dioxide, methane, and
other atmospheric trace species that are strong radiative absorb-
ers. The passage of radiation through the atmosphere, its
reflection from the earth’s surface, and retransversal through
the atmosphere into outer space, is traditionally modeled by
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solving an appropriate set of differential equations describing
the process. The input to such models is the column densities
of the trace gases and the temperature profile as functions of
altitude. As with chemical kinetics, such radiative transport
calculations are performed an enormous number of times in the
global treatment of atmospheric modeling over realistic time
intervals. Enhanced efficiency of this component of atmospheric
modeling could have a significant impact on overall model
performance.

From a system IO perspective, atmospheric radiation transport
is a functional mapping problem analogous to the potential
surface mapping called for in subsection 3.4. The input consists
of functions describing the trace species column densities and
the temperature profile; in addition, the output heating rate is
also a function of the altitude. In practice, the input functions
would be discretized, possibly on a grid over the altitude, and
the value of each of these discretized variables may be treated
as an input variable to an HDMR. This problem has the same
advantageous feature as quantum mechanical potential surface
input in subsection 3.4, where better input spatial resolution
also coincidentally tends to produce simplified and more
accurate HDMR's. An illustration of the ability of an HDMR
to capture radiation transport behavior has been carried out44

with atmospheric temperature and water vapor concentration
each discretized at 30 altitudes as input along with the earth’s
surface temperature and albedo, leading to a total ofn ) 62
variables. The output heating rate was also discretized into 30
atmospheric layers, and each of the local heating rates became
an HDMR over the full space of 62 input variables. The resultant
Cut-HDMR's, taken to second order, produced excellent results
for predicting heating rates with errors no larger than∼3%,
with the HDMR simultaneously being nearly∼103 times faster
to evaluate than the original radiation transport code. An
illustration of IO radiation transport behavior is shown in Figure
5 for an arbitrary water and temperature profile as input and

the resultant heating profile from the HDMR, as well as that
obtained by the original radiation transport package. This typical
result illustrates the excellent quality of the HDMR. Much
further development is needed to include additional atmospheric
physical effects (e.g., clouds) and species to produce a viable
HDMR radiative package for insertion into full atmospheric
modeling.

4. Concluding Remarks

This article has focused on chemical/physical phenomena
involving large numbers of input variables, and it should be
evident that problems of this type are quite generic in many
areas involving experimentation, plant operations, and modeling.
Essentially the same methodology being developed for these
chemical applications may be transferable to even broader
classes of problems of equal significance in other domains.
Exploration of the diverse applications of HDMR can, in turn,
stimulate further development of the primary chemical/physical
applications. As an example going beyond chemistry, economic
systems of all types are frequently characterized as IO problems
for understanding and estimation of future behavior. An
illustration of this type was carried out considering derivatives
(i.e., financial instruments whose value derives from the value
of other commodities). An HDMR was generated withn ) 5
input variables, based on real trading data. The quality of the
results was excellent, with the HDMR showing predictive
capability with errors typically no larger than∼ 8%.45

Beyond this application, interestingly, there are others in
economics which are mathematically analogous to those arising
in chemistry. For example, industrial plant or economic system
performance under conditions of constrained resources is a
problem mathematically like that of chemical formulations
theory in subsection 3.1 where a mass fraction constraint was
present. Many analogies to other interesting problems also exist.
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