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In the chemical sciences, many laboratory experiments, environmental and industrial processes, as well as
modeling exercises, are characterized by large numbers of input variables. A general objective in such cases
is an exploration of the high-dimensional input variable space as thoroughly as possible for its impact on
observable system behavior, often with either optimization in mind or simply for achieving a better
understanding of the phenomena involved. An important concern when undertaking these explorations is the
number of experiments or modeling excursions necessary to effectively learn the systerrigoiput
behavior, which is typically a nonlinear relationship. Although simple logic suggests that the number of runs
could grow exponentially with the number of input variables, broadscale evidence indicates that the required
effort often scales far more comfortably. This paper considers an emerging family of high dimensional model
representation concepts and techniques capable of dealing with such-guutput problems in a practical
fashion. A summary of the state of the subject is presented, along with several illustrations from various
areas in the chemical sciences.

1. Background Before dealing with the technical issues involved with high
dimensional (i.e., systems with large numbers of input variables)
input — output (I0) mapping at the heart of HDMR, consid-
eration of some typical examples is useful. Cases of high
dimensional IO mappings abound, and the discussion here does
not aim to be thorough; further consideration of HDMR
applications will be returned to later in section 3. As a first
example, many complex materials are specified by input
is to perform as many runs as possible, aiming at an explorationvariables that cor_lsist of the che_mical components prescribing
’ the substance of interest. In a mixture formulation, these input

of the input variable space with respect to its impact on one or _ _". : .
. . variables may be expressed as the mole fractions of the chemical
more system observables of interest. Such exercises may be

) . - ) Species, where the observables are one or more properties of
performed either to gain a physical understanding of the role - : : -
. . . the mixture (e.g., the viscoelastic properties of a polymer blend).
of the input variables, or often, ultimately for purposes of

A : . h S Such mixture problems are complex, as typically, the properties
optimization to achieve one or more desired physical objectives ; . . o .

. . . . ; of the mixture are not just a linear combination of the properties

by special choice of the input variables. This paper addresses

the use of high dimensional model representation (HDMR) for of the.'npUt.Chefmlcal components. A S|m'|lar problem arises in
. . chemical kinetics, where the input variables are the initial
making such efforts more feasible.

chemical concentrations, and the outputs are the concentrations
*To whom correspondence should be addressed. at some latter time. Molecular materials (i.e., a sample consisting

 Department of Chemistry, Princeton University. of a single type of molecule) encompass many applications,
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This paper is concerned with a common situation associated
with either the performance of experiments or the modeling of
chemical/physical systems where there are large numbers of
input variables accessible for alteration. The latter alteration of
the input variables may be done with some design strategy in
mind, or it may occur randomly due to natural uncontrolled
variations in the input. In either circumstance, a frequent goal
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material, thath variable may be associated with il site for is a function and good sampling resolution is required, thereby
chemical functionalization on a reference molecular structure. leading to hundreds or more discretized input variables.
In the case of a protein subject to amino acid mutation, the  Regardless of the circumstance, these 10 problems become
total number of variables (i.e., sites for mutation) can be very challenging, as the numbers of samples (i.e., whether experi-
large, and variable; associated with protein backbone site  ments or modeling calculations) over the input variable space
may take on up to 20 values over the naturally occurring amino rise to reveal the essential structure of the 10 mapping. The
acids. In contrast, pharmaceutical molecules are typically of potential scope of such problems may be understood for a
modest-size, generated by functionalization of a small number system withn variablesx = (x4, Xz, ..., X»). For simplicity, here
of sites on a reference chemical scaffold. For pharmaceuticals,we may consider each variabteto run over the same number
theith site variable could take on a large number of values, as of discrete valuesx(, x;,, ..., Xi), such thas = s, for all i, and
a rather arbitrary set of chemical moieties may be consideredit is evident that the input variable space is covered by a grid
for substitution on a suitable molecular scaffold. Molecular of s" points. Considering that could be 10 or more in many
materials inherently differ from those of mixture formulations, cases, and that could even be hundreds in some systems,
as molecular moiety input variables are discrete (e.g., methyl-, reveals the very daunting task of thoroughly exploring typical
ethyl-, chloro-, etc.), while the component mole fractions as realistic input variable spaces in chemical/physical systems. This
input variables in mixtures can take on continuous values. apparent exponential growth in exploration effort is sometimes
Mixture materials drawn from a large set of possible molecular referred to as the “curse of dimensionality”, and it produces a
species have both discrete and continuous variables. All of theselongstanding function mapping problexn— f wheref(x) = f
material problems, characterized by either large numbers of input(x,, x,, ..., x,), n> 1, andf(x) is a system observable output of
variables or large numbers of variable values, has led to muchinterest. Problems of this nature occur in virtually all areas of
interest in high throughput synthesis and screening techniquesscience and engineering, as well as other disciplines where
in an attempt to deal with the potentially exploding number of similar levels of possible exponential difficulty loom as
samples that may be considered. roadblocks to the exploration of the full input variable space to

Another class of problems with high dimensional input occurs an acceptable degree of resolution and quality.
in molecular modeling, where the inter- or intramolecular  The fundamental question is whether the effort of determining
potential surface as an inpdtinction dictates all relevant  physically based |0 mappings is expected to typically scale
dynamical evolution and properties, leading to one or more exponentially in difficulty, or possibly in a more attractive, less
observables such as cross sections, rate constants, etc. In thigramatic fashion. Fortunately, there is ample evidence suggest-
case, the input potential function lies in a space that, in principle, ing that much more reasonable scaling should often exist as
is described by an infinite number of variables, or more the number of variables rises. This fortunate circumstance
practically, large numbers of discretized variables that define a seems to occur ubiquitously for a number of reasons. In the
realistic family of potential surfaces. A physically distinct, but limit of a totally irregular 10 mappingx — f, then an
mathematically analogous, inptt output mapping problem  exponentially growing number of samplgswill be needed.
involves solar radiation transport through the atmosphere, whereThe notion of irregular here means that every pointould
the input consists of the column densities of various trace gasesproduce distinctly unrelated output behavior to that of other even
and the atmospheric temperature as a function of altitude, andnearby points. Thus, it is crucial whether the sysféfhcontains
the output is the atmospheric heating rate (i.e., as a function ofidentifiable regular structure with respect to the space of
the altitude) due to net solar radiation absorption. This applica- variablesx = (i, Xz, ..., X,). In practice, highly irregular 10
tion is of relevance to global warming, atmospheric kinetics, maps often do not occur, and to appreciate this comment, it is
and general weather modeling. In this case, as for the previousmost useful to view the breadth of 10 behavior in terms of the
example with potential surfaces, it would be natural to discretize degree of cooperativity (or correlations) among the input
the input functions to form a set of variables representing variablesx = (x1, X, ..., Xn) for their impact uporf(x). In this
reasonable spatial resolution. In this context an input variable sense, a hierarchy can be envisioned, starting with the variables
is, for example, the value of an input column density at a acting independently (but still possibly nonlinearly) of each other
particular altitude. for their impact onf, and then in all possible pairs for their

A common characteristic of all the aforementioned illustra- impact, in all possible triples for their impact, etc., finally to
tions, and many others, is the large number of variables thatthe highestth level of inseparable cooperativity among all of
may naturally arise to describe the input. The notion of “large” the input variables. The extent of high order variable cooper-
in this context depends on the particular application, and ativity depends on the choice of input variables; there is much
especially the difficulty of either appropriately observing or freedom in this choice for any system. In any application, there
calculating the system output corresponding to any single is @ natural predilection to choosing the chemical/physical input
specification of all of the input variables. For example, in the Vvariables so that they act as independently as possible, and this
case of semiconductor materials (e.g., the quaternary compoundact alone naturally leans toward the existence of a limited
Gadni—xAs,Shi—y which is of two dimensionsx andy), the degree of input variable cooperativity upbim the hierarchy
system dimension is low, but the time and cost for synthesizing discussed above.
even a single sample can be quite high. The search for Perhaps the strongest generic evidence for the typical lack
pharmaceuticals is generally of a similar nature involving low of high order input variable cooperativity can be found in the
numbers of variables (i.e., the number of sites for functional- overwhelming body of statistical analysis data of many systems,
ization on a molecular scaffold), but the number of moiety where it is rarely found that more than covariances (i.e.,
values for each of these variables can be very large, ranging upcooperativity ordet = 2) are necessary to describe the input
to 1% or more. In this case, making one potential pharmaceutical multivariate contributions to virtually any system output. In the
molecule may be easy, but making all relevant possibilities gets extreme limit of the input variables acting totally independently
out of hand. In other problems, the number of variables involved (i.e., cooperativity order= 1), although not necessarily linearly,
can be inherently large, and one example occurs when the inputthe number of runs or experiments necessary to learn the 10
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map of the system will scale asns, and similarly, atl = 2, model assessment and analysis t¥ol® for capturing high
the scaling will be~(n9?2 Thus, the degree of cooperativity —dimensional 10 system behavior. As the impact of the multiple
among the input variables is crucial for determining the true input variables on the output can be independent and coopera-
scaling or complexity required to learn system 1O response tive, it is natural to express the model outd(®) as a finite
behavior. As a special case, chemical systems described at thénierarchical correlated function expansion in terms of the input
atomic and molecular level are naturally dominated by few- variables:
body interactions, which is fully consistent with the same low .
order variable cooperativity behavior. Perhaps, most surprising
is the apparently ubiquitous dominance of low order input () =fo+ ) fi(4) + z 06, %) +
variable cooperativity across science and engineering, at length = 1=I=j=n
scales beyond atomic dimensions. Z fi (0 X X + oo

Every chemical/physical problem will have its own charac- 1=i<7=k=n
teristics in terms of the degree of variable cooperativity present, z filiz...i‘(xil, X0 ...,xil) + o (X X e X)) (1)
and the premise of HDMR is that realistic well-defined systems 1=ii<<ii=n
are dominated by low order behavior such thatn. Accepting

this premise, the key issue is how to exploit this behavior for Where the zeroth-order (i.é.= 0) component functiory is a
translation into specific algorithms to guide the taking of Cconstant representing the mean responskxjo and the first

laboratory or simulation data and the representation of the °rder (i.e.] = 1) component functiofi(x) gives the independent
system IO in a physically transparent and quantitatively contribution tof_(x) by theith input vanable_ acting ann_e, the
convenient fashion. In this manner, for< n, the goal is o Second order (i.el, = 2) component functiorij(x, x) gives
perform a modest number of experiments or model runs while (€ pair correlated contribution ) by the input variables;

still retaining full fidelity of the 10 map throughout the input andx;, etc. The last term?_--"(x_l' X2, '"'X_”) contains any residual
variable space. This problem, addressed by HDMR, can be nth order correlated contribution of all input variables. The above

viewed as interpolation of the system output throughout the input TPMR €xpansion has a finite number of termésé and is always
variable space, which is possibly of very high dimensiom exact. Other expansions have been suggeStduljt they

broad literature exists on function representatiori8,and the commonly have an inf_inite numbef of terms with some specified
present paper will focus on HDMR, as ample reviews exist functions (e.g., Hermite polynomials).

including a discussion on the background to HDMR. Section 2 _ 'he basic conjecture underlying HDMR is that the component
below will discuss the mathematical and algorithmic 10 functions in eq 1 arising in typical real problems are likely to
representation problem, followed by a summary of various exhibit only low qrdg_rl cooperativity among the input varl_ables
aspects of HDMR. Section 3 will present several chemical/ SUch that the significant terms in the HDMR expansion are

physical illustrations of HDMR on problems ranging from €XPected to satisfy the relationi:< n for n > 1. Experience
dimensionn = 2 ton = 1000 in order to give a sense of the ShoWs that an HDMR expansion to second order

scope and power of the concepts. The motivation in all n

applications of HDMR ultimately reduces to matters of ef- fox) ~f,+ S fix) + Z 04, %) 2)
ficiency and speed, both for learning 10 mappings as well as & 1 n

exploiting them for subsequent optimization or other purposes.

Section 4 will present some summarizing comments on this often provides a satisfactory descriptionftX) for many high

<<=

topic, which is still under active development. dimensional systems when the input variables are properly
. chosen. HDMR attempts to exploit this observation to efficiently
2. HDMR Formulations determine high-dimensional 10 system mapping. The presence

Many problems in science and engineering reduce to finding of only low order variable cooperativity does not necessarily
an efficiently constructed map of the relationship between setsimply a small set of significant variables nor does it limit the
of high dimensional system input and output variables. The nonlinear nature of the 10 relationship. Figure 1 gives an
system may be described by a mathematical model (e.g.,example of typical first and second-order HDMR component
typically a set of differential equations), where the input functions which reveal the nonlinear relationships between
variables might be specified initial and/or boundary conditions, model inputs and outputs.
parameters or functions residing in the model, and the output 2.1.1. Optimization Procedures to Determine HDMR Com-
variables would be the solutions to the model or a functional ponent FunctionsExploiting the expected low order variable
of them. The IO behavior may also be based on observationscooperativity in high dimensional systems can only be done if
in the laboratory or field where a mathematical model cannot practical formulations of the HDMR component functions can
readily be constructed for the system. In this case the 10 systembe found. The HDMR expansion component functién&(x),
is simply considered as a black box where the input consists of fjj(x, X;), ... are optimally tailored to each particulgx) over
the measured laboratory or field (control) variables and the the entire domairf2 of x. A component functiofi . ..i,(Xi,, i,
output(s) is the observed system response. Regardless of the.., x;) (I = 0, 1, ..., n — 1 with fy corresponding té = 0) is
circumstances, the input is often very high dimensional with obtained by minimizing the functional
many variables even if the output is only a single quantity. We

refer to the input variables collectively as= (x1, X2, ..., Xn) . A -

with n ranging up to~10?—10® or more, and the output #). fiszh fg W i, (R0 W) = o = / fiw) =

For simplicity in the remainder of the paper and without loss =

of generality, we shall refer to the system as a model regardless z f(u,u)—...— fooi(U U, U )]Zdu
of whether it involves modeling, laboratory experiments or field ,_.&_ """ e g T "

studies. A3)
2.1. Theoretical Foundations of HDMR.High dimensional
model representation (HDMR) is a general set of quantitative under a suitable specified orthogonality condition which guar-
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Figure 1. The functional behavior of typical (above) first- and (below)
second-order HDMR component functions from a bioremediation model
for a uranium soil contamination sitéHere the input variableg and

X; are rate constants in the model, and the outgsithe accumulated
flux of uranium U passing through a given depth from the soil surface.
This nonlinear behavior is typical of many chemical/physical models.

Li et al.

The last termfio...n(X1, X2, ..., Xn) in €q 1 is determined by the
difference betweeif(x) and all other Cut-HDMR component
functions.

The above formulas can be readily obtained from eq 3 or
simply by substituting,, Xi,, ..., i, X1z-1) with different sets
of {iy, iz, ..., i} € {1, 2,..,, n} for x on the both sides of eq 1
and using the following specified condition: a component
function of Cut-HDMR vanishes when any of its own variables
takes the value of the corresponding elemerg,ine.,

fipi (5 X - X)) =%, =00 S€{igip i} (9)

Equation 9 serves to define an orthogonal relation between two
different component functions of Cut-HDMR as

Fistpd O X e X5, (6,0 X0 %)l =% = O
Shid

The Cut-HDMR component functionfi(x), f;(x, %), ... are
typically attained numerically at discrete values of the input
variablesx;, X, ... produced from sampling the output function
f(x) for employment on the right-hand side of eqgs& Note
that the Cut-HDMR component functions are defined aloug
lines, planes, subvolumes, etc., through the reference goint
in Q.

Since all the Cut-HDMR component functions satisfy a
minimization condition in eq 3, they are optimal choices for a
given outputf(x). Experience shows that often only low order
terms of Cut-HDMR are needed to give a good approximation
for f(x). Numerical data tables can be constructed for these
component functions, and the valued(@j for an arbitrary point
x can be determined from these tables by performing only low
dimensional interpolation ovéi(x), fij(x;, %), ... . If each input

se{ip iy i} U{ipip - (10)

antees that all the component functions are determined step-variable is sampled a different values (with the cut center

by-step. HereX = (X, X, ..., %), du = duidus...du,, and
Wii,..i,(X,U) is a weight function.
Different weight functions will produce distinct, but formally

equivalent HDMR expansions, all of the same structure as eq
1. There are two commonly used HDMR expansions: Cut- and

RS(Random Sampling)-HDMR. Cut-HDMR express$eg in
reference to a specified cut poirtin Q, while RS-HDMR
depends on the average valuef@f) over the whole domain
Q.

1. Cut-HDMR. For Cut-HDMR a reference poiRtis first
chosen in thex-dimensional input variable space. When Cut-
HDMR is taken to convergence, the representatiofiC’of is
invariant to the choice oX. In practical circumstances it can
be wise to choosg within the neighborhood of interest in the
input space.

The Cut-HDMR component functions with respect to refer-
ence pointx have the following forms:

fo =f(X) (4)
fiog) = f(x, X) — f (5)
fi (%) = 06, %, ) =) = fix) —f,  (6)

where
(6 X) = (R, 0 %1 % Ky o %) 7)

(% %, )_(ij) = (Rpy o Xims X Kies oos X1 X Xipgy s %) (8)

being one evaluation point), the required number of model runs
to construct théi(x), fij(x, X) ... tables is

2
1+n(s— 1)+W+

which grows only polynomically witm ands. The sample
savings for largen are significant compared to traditionsll
sampling. Thus, Cut-HDMR renders the original exponential
difficulty to a problem of only polynomic complexity.

2. RS-HDMR. For RS-HDMR, we first rescale variabbes
such that O< x < 1 for all i. The output functiorf(x) is then
defined in the unit hypercub€" = {(xq, X2, ..., X))|0 < % < 1,

i =1, 2,.., n} by suitable transformations. The component
functions of RS-HDMR possess the following forms:

fo= [ f(u)du (11)

f06) = [l foeu) dd' — 1, (12)

F06 %) = oo of06, X, Uy du’ = £,06) = (x) =, (13)

where dil and dill are just the productiddu,...du, without du;
and diduy;, respectively. Finally, the last terfiy...n(X1, X2, ...,
Xn) is determined from the difference betwekx) and all the
other lower order component functions in eq 1.
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Considering that the domai® is a unit hypercube is the
average value dix) over the whole domain in contrast with
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subspace of the linear spacé Any function f(x) € & is
invariant upon the action of, i.e.,

of Cut-HDMR, which is the value dix) at the specified single
reference poink.

All the above formulas can be readily obtained from eq 3 or
simply by integrating both sides of eq 1 with respect to different
sets of input variablegxi,, Xi,, ... X} (I =n,n—1,.., 1), and
using the following specified condition: the integral of a
component function of RS-HDMR with respect to any of its
own variables is zero, i.e.,

£Hx) =1(x), Of(x) € @, (22)
This implies that upon the action pfthere is no error for any
function f(x) € ®.. The larger the rangeb; is, the better
approximatiory; produces for7.

Two projectorss; ands; are mutually orthogonal if

A=/ =0 (23)

Q/(;lfiliz---h(xil’ X o X) =0, S€{iyip ..} (14) This is equivalent to

ONP;=0 (24)
which defines the orthogonality relation between two different
RS-HDMR component functions as A sum of two mutually orthogonal projectgist 4; is also a
projector whose range i&; + ®; which is larger than either

®; or @;. Therefores; + 4 will produce an approximation for
Fwith better accuracy than provided by either single operator
i andg;.

Any set of commutative projectors generateliatributive
lattice whose elements are obtained by all possible combinations
(Boolean addition and multiplication) of the projectors in the
set!® In particular, the lattice has a uniqueaximalprojector
//'which provides the algebraically best approximationo
The range of the maximal projectof/ for the lattice generated
by mutually commutative projectofgs, /2, ..., 4 is the union
of all the rangesb,, i.e.,

D, =0, Ud,U..Ud,

./Iz(“filiz---il(xil’ Xiz""'xil)fjﬂz---jk(le' Xiz""’ X‘l) dx =0
Jid
Evaluation of the high dimensional integrals in the RS-HDMR
expansion may be carried out by Monte Carlo random sam-
pling,’® and hence the name RS(random sampling)-HDMR.

According to the above formulas one can see that all the
component functions of the Cut- and RS-HDMR expansions
can be directly constructed from the values of oufixiteither
at ordered or randomly sampled pointsxpfwhich makes the
determination off, fi(x), fij(Xi, %), ... straightforward.

2.1.2. HDMR Component Functions Obtained from Orthogo-
nal Projection OperatorsTo attain a better understanding of When the projectors are mutually orthogonal, the maximal
the HDMR expansions, we may view the concept from another projector is simply their sum
perspective. The component functions of an HDMR can be
obtained through application of a suitably defined set of linear
operatorgso, 4i (i = 1, 2,.., n), (1L =i <j = n), ...

{ipiy i} Z{inis - (15)

(25)

S

M= ps

(26)

Lo f(x) =1, (16) and the rang@ ,is 35, ®;. When more orthogonal projectors
are retained in the set, the resultant approximatiorrabtained
i () = fi(x) a7 by its maximal projector// becomes better.
As an example, if we choose the subsggt= {0, 4i(i = 1, 2,
L f(x) = fij (%, x]-) (18) .., N)} of the above mutually orthogonal projectors to generate

a lattice, its maximal projector is simply the sum of all these
Equations 46 and egs 1%13 reveal the corresponding projectors:
definitions of the operators for the Cut- and RS-HDMR
component functions, respectively. It has been proven that all
the operators for the Cut- and RS-HDMR expansions are
commutative projection operators and they are mutually or-

thogonal to one anothét,i.e., they obey 1. idempotency,

n
Jh=pot ) s

(27)

and the best approximation ffk) € by the projectors in this
lattice is

/’izliz...i‘ =iy Un iz 0} € {1, 2, .0} (19)

n n

f(X) =~ A T(X) = o T(X) + ) £ T(X) =T, + ) fi(x) (28
where 0< | < n, and/ corresponds tb= 0; 2. orthogonality, ) 11x) =/ () |:/| 0=t & ) (28)

biio ilisoin = O-{in I s i} Z{jn Jo 0l (20) which is the first-order HDMR approximation fé(x). Similarly,
/I1I2 l/JlJZ Jk 172 | 1 )2 for the subset; = {/Joy/i(i =1,2,.. n),/fij(l < <j < n)},
and 3. resolution of the identity, the best approximation dfx) €7 is given by
n
n 7 — ) . —
Z) z S =1 (21) f(x) ~ 1, f(x) =, f(X) + 2 i (%) 1<;< n/z,] f(x)
=0 1<i;<..<ij=n <I<]=

n

fot+ ) fiGs) + Z fi; (%, %) (29)
1= 1 =n

<I<]

wherel denotes the identity operator.

The projectors act on a linear spacé composed of all
n-variable functionsf(x). Each projectoy: provides an ap-
proximation sf(x) for f(x), and has its ranged; which is a

which is the second-order HDMR approximation f¢x), and
so on.
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As )1 is a subset of/;, and. 7% is the maximal projector in the productﬂ'Fl(xiS — %J% with larger |. Moreover, if the
the lattice generated by, then® , C ®_ 5, and./%; is better higher order derivatives have complex structure, especially with
than.7, i.e., the second-order approximation of HDMR is better sign changes over their indic&s X;, ..., then random phase
than the first-order one. This implies that adding a new arguments further suggest that the higher order HDMR com-
orthogonal projector into a sum of orthogonal projectors always ponent functions will tend to be small. Evidence supports this
produces a new projector with better accuracy. Finally, as the qualitative behavior, although there is no rigorous proof of the

sum of all projectors of the HDMR expansion is the identity,
the full HDMR expansion is exactly equal f(x).

It can be readily proven that the range for projegioH- 4
is any constant and any function of varialgeand the range
for so + Y, 4i is any constant and any linear combination of
functions with one variablei(i = 1, 2, ..., n). Similarly, the
range for projectopo + Zi":l/;i + Y 1<i<j=nsi is any constant
and any linear combination of functions with one or two
variablesx;, xj (1 < i <j < n). This property can be employed
to identify error free regions ir space for different order Cut-
HDMR approximation$213As f(x,X) is a one variable function,
it is invariant to the projectoso + Z{‘:l/;i, i.e., there is no error
for the first order Cut-HDMR approximation &fx) whenever
the pointx is located on a cut line through the reference point
X in Q. Similarly, f(x;, x, XU) is a two variable function, and
thus there is no error for the second order Cut-HDMR
approximation off(x) whenever the poink is located on any
cut line or plane through the reference poir Q. In summary,
there is no error for thih order Cut-HDMR approximation of
f(x) whenever the point is located in ank(k < I)-dimensional
subvolume across the reference pairih Q.

2.2. Properties of HDMR Expansions2.2.1. Fast Coper-
gence of HDMR Expansion&s mentioned above, HDMR

behavior.

Each of the subclasses of the Taylor series corresponding to
different component functions of Cut-HDMR do not overlap
one another, which is the basis for the orthogonal relation
between two Cut-HDMR component functions. Other HDMR
expansions possess the same property as Cut-HDMR because
a one-to-one relationship between two different HDMR expan-
sions can be established. Thus, if Cut-HDMR converges at
certain order, so do the other HDMR expansiéhs.

2.2.2. Inariance of Conseration Laws for HDMR Ap-
proximations f a set of physical outputgft(x), f@)(x), ..., f9-

(x)} obey a set of linear-superposition conservation Iaws their
HDMR approximations at any order also obey these conserva-

expansions have been observed to converge fast in realistichgre

applications. The origin of this property can be understood from
the following analysis. Suppose an outjix) defined in a unit

hypercube ok can be expanded as a convergent Taylor series

at reference poirg, i.e.,

N 9f(x)
fx)=f(x) + » —x—%)+
=1 0X
N1 9%(X)
D> (= X) — %)+ ... (30)

|J_12' 8 8)(J

This Taylor expansion can be used to give clear mathematical

meaning to the Cut-HDMR component functions. According
to the definitions off, fi(x), fij(X, %), ... given in eqs 46, it is
easy to prove thdp = f (%), i.e., the constant term of the Taylor
series. Sincd(x) = f (x, X)) — f(X), substituting %, X/) for x
and subtracting(x) from the both sides of eq 30 givégx;).

As all the terms containing;(j = i) vanish, the first-order
component functiorfi(x) is the sum ofall the Taylor series
terms which only contain variablg. Similarly, the second-
order component functiofy(x;, X)) is the sum ofall the Taylor
series terms which only contain both variablesand x;, etc.
Thus, the infinite number of terms in the Taylor series are
partitioned into a finite number of distinct groups, and each
group (still containing an infinite number of terms) corresponds
to one Cut-HDMR component function, i.e., each component
function of Cut-HDMR is composed of an infinite subclass of
the full multidimensional Taylor series. Therefore, a truncated
Cut-HDMR expansion is likely to give a better approximation

of f(x) than any truncated Taylor series because the latter only
contains a finite number of terms. Furthermore, considering that

0=x=1(@(=1,2,..nand — %) <1, the high order
Cut-HDMR component functions are usually smaller than low

tion laws™?i.e., if
S
w, ') =¢, k=1,2,..m (31)
=
where{w} and{c} are two sets of constants, then
S .
w7 )] =¢, k=1,2,..m1=0,1,..,n (32)
=
n
M= pot+ ) /i +..+ LSt (33)

1<i;<..<ij=n

and .7 f(x) denotes thdth order HDMR approximation for
f0(x). This property can be proven by applying operatgrto
the both sides of eq 31 and using the identity

My c=c, cbeinga constant (34)
The invariance of conservation laws is very useful for the
application of HDMR in physics, chemistry and other disciplines
where conservation laws (e.g., mass, energy, momentum
conservations, etc.) are important.

2.2.3. Decomposition of System Variance by RS-HDMR.
Using the orthogonality property of the RS-HDMR component
functions, it can be proven that the total variam%eof f(x)
caused by all input variables sampled uniformly over their full
range may be decomposed into distinct input contributions in
the following mannet?

0f = [l = Pdx = [ [1(0) — fol*dx =
ﬁ@[__ fi(x) + z fi (%, %) + JPdx

1<i<J=n
Zl [ R(x) o + Z S [0, %) o dx + .
-i0i2+ z of + ...

1<i<|=n
1<i<]=n
wheref is the mean value of(x) over the whole domai2.

(35)

order ones because the high order component functions involveThus, the total varlanc& is the sum of first-order variances



Feature Article J. Phys. Chem. A, Vol. 105, No. 33, 2002771

o2, second-order covarianceﬁi, etc. This property is useful  samples fof(x) are necessary to determine all the component
for global uncertainty analysis because the above decompositionfunctions of RS-HDMR at different values of the elements of
is valid over the whole domain. The magnitudes of the indices X.
o7, o7, etc., reveal how the output uncertainty is influenced by ~ 2.3.2. Monomial Preconditioning Cut-HDMRAs argued

the |nput uncertainties and the nature of the cooperativities that€arlier, very often the high order HDMR terms are small thereby
exist. These multivariate indices are nonlinear analogues of themaking low (usually, first and second) order HDMR ap-
usual statistical moments for multivariance analysis. The fact proximations satisfactory for practical purposes. However, in
that covariances are often adequate to describe multivariateSome cases the first- or second-order HDMR approximations
system statistics is also supportive of the fast convergence ofmay not provide the desired accuracy, and higher order HDMR

the HDMR expression. approximations might have to be considered. For Cut-HDMR,
2.3. Approximate and Extended HDMR.2.3.1 Approximate  the higher order terms demand a polynomically increasing
Formulas for RS-HDMR Component FunctioriEhe direct number of data samples and possibly large computer storage.

determination of the component functions of RS-HDMR at If the higher order component functions of Cut-HDMR can be
different values ofx, X, ... by Monte Carlo integration can approximately represented in a similar fashion as those for the
require a large number of random samples. For instance, distincizeroth-, first-, and second-order component functions, then
Monte Carlo random samples fifk;, X/)at different fixed values ~ higher order approximations of Cut-HDMR can be included
of x; are needed to determirigx) in eq 1220 To reduce the ~ Without dramatically increasing the number of experiments or
sampling effort, the RS-HDMR component functions may be model runs as WQII as (educing computer storage reqqirements.
approximated to any desired level of accuracy by the following One way to realize this concept is to represent a high order
two means. Cut-HDMR component function as products of low order Cut-

1. Analytical Approximation. The RS-HDMR component HDMR component functions and some suitable functions of
functions may be approximated by expansion in terms of a the remaining input variables. For instance, a third-order Cut-
suitable set of functions, such as orthogonal polynomials, spline HDMR component function can be approximated as

functions, or even simply polynomial functio®s, _ _
fis (% X5, %) & @, X5, %) Fo 1 @, %) Fi(x) +
@i %) Fi(6) + (%, %) i) + @) F(%, %)
f.(x : ik j j j j
00~ Zl‘" %) (36) 7,0 Tu% %) + 3,%) Ty, %) (42>

! wheregi(x), ¢;(%), ..., @ik(X, X, X are suitable known functions

fj (%, %) ~ Z Zﬂrsprs(xh X) (37) (e.g., the products of monomials - by), (x — by) and ¢ —

r=ls= by) where theb’s are constants), anfg, f(x.) . fik(%, %) are
Cut-HDMR component functions for some g|ven functigx)-
related tof(x). Thus, the three-dimensional numerical table for
fik(Xi, %, X is replaced by some one- and two-dimensional
numerical tables. The saving is large, especially for high order
component functions. Using projector theory, an approach

wherea,, (s are constant coefficients, afi(x), Prs(X;, ) are
one- and two-variable bases. Assuming that the functions are
orthogonal, the coefficients are given by

SO0 () dx referred to asnonomial preconditionin@ut-HDMR has been
- A, . (38) developed for this purposé?*
fo pr(x) dx; 2.3.3. Multi-Cut-HDMRThe basic principles of HDMR may
be extended to more general cases. Multi-Cut-HDMR is one
j;(nf(x)prs()(i’ x]-) dx extension where severéh order Cut-HDMR expansions at
(39) different reference pointa(1), a(2), .., a(m) are constructed,
J;j(’) prs(xn J) dx; dx‘ and f(x) is approximately represented not by one but by all

m Cut-HDMR expansions:

As no restriction is posed on the values of the elements of

for f(x) in the above integrals, only one set of random samples _ ®) (K

for f(x) are necessary to determine all the coefficients, and f0) = ;WK(X)[fO + Izlf )+ F

consequently all the component functions of RS-HDMR. The B - 9

sampling effort is then dramatically reduced. ' Z i Oy %)] (43)
2. Numerical Approximation. The RS-HDMR component 1l =iz=...<ii=n

functions may be also approximated numerically by using

reproducing kernels or filters. These kernels can be used to

reduce the sampling burden as well as to act as a filter with W, (X) =

noisy input datef(x). For instance, the first- and second-order ¥

RS-HDMR component functions are given by

The coefficientsm(x) possess the properties

1 if xis in any cut subvol of th&th point expansim:t

0 if xisin any cut subvol of other point expansio
fi(x) = ﬂ@f(u)k(xi; u)du —f, (40) (44)

fi 06 %) = fiaf (KOG, % U, ) du = fi(6) = fi(¢) — Ty (42) iwk(x>=1 (45)
k=

wherek(x; u) andk(x, x;; u, u) are reproducing kernets:??
Similarly, as no restriction is posed on the values of the elements The properties of the coefficientg(x) imply that the contribu-
of u for f(u) in the above integrals, only one set of random tion of all other Cut-HDMR expansions vanish except one when
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X is located on any cut line, plane, or higher dimensiord) ( for realistic applications. This emphasis serves the dual purpose
subvolumes through that reference point, and then the Multi- of exploiting HDMR for current problems of interest, as well
Cut-HDMR expansion reduces to single point Cut-HDMR identifying new algorithmic areas that need further development.
expansion. As mentioned above, thé order Cut-HDMR This section will present a short synopsis of a variety of
approximation does not have error wheis located on these  applications, spanning atomic and molecular phenomena up
subvolumes. Wherm Cut-HDMR expansions are used to through macroscopic and environmental processes. Some of
construct a Multi-Cut-HDMR expansion, the error free region these applications have now been published while others are in
in input x space ism times that for a single reference point press and some are awaiting documentation. Given the space
Cut-HDMR expansion. Therefore, the accuracy will be im- |imitations here, only a brief description of each application will
proved. be presented, and the interested reader is referred to the cited

There are a variety of choices to defg(x). For example,  references and forthcoming works for complete details. The
the metric distanceg,'>" from point x to anl-dimensional  scope of the illustrations below will also indicate the breadth
subvolume with variable§x, X, ..., X} through reference point  of applicability of HDMR.

ak) (k=1,2,...m 3.1. Chemical Formulations.A common materials problem

o n is the preparation of formulations (i.e., mixtures) with
P2 (x) = [ Z % — &))" {ig, ip ..} C component variables= (xy, X, ..., X,) which are mole fractions
i= implying the constrainfL,x = 1. A physical output property

0tz f(x) may often have many input componems> 1, and the

{1,2,...n} (46) output can depend on the components a nonlinear fashion.
can be used to define Often, optimization off(x) over x is desired and this is an
m especially challenging task for large when each sample is
W (x) = I—l pilig...n(x) (47) expensive to make .and/or test. Furthermpre, additional con-
K g =i L s straints may also exist among some groupings of the chemical
s=k components, corresponding, for example, to miscibility criteria
or material cost limitations, etc. Minimally, there will be the
W(X) single total mass fraction constraint that defines a volume in
Wi(X) = U (48) the composition hypercube of dimension- 1, such that 0<
Z Wy(X) z{‘;llxi < 1. At first sight, this constraint would seem to cause
& considerable difficulty in exploring the composition input space,
as the variables are mutually constrained. However, mitigating
this difficulty is the fact that the physically accessible composi-
tion volume occupied in the unit hypercube goes down as 1/(
— 1)I. Furthermore, the mean distance between any two arbitrary

It can be readily proven that the defineg(x) satisfies the
required properties if different reference poiafk) do not share
any coordinate. When tr&k)’s have the same values for some
elements, modified definitions faki(x) may be used.

2.3.4. HDMR with Discrete Input VariabledDMR can treat ~ POINts in the volume also shrinks asLivn. Thus, viewed
discrete as well as continuous input variables. The notion of from an interpolation point of view, this is an ideal circumstance,

inherently discrete variables refers to those that are naturally &S the overall accessible space is shrinking primarily to a region
discrete (e.g., molecular moieties functionalized on a scaffold). @round the origin, with thin narrow “fingers” shooting out the
A potentially serious difficulty in treating inherently discrete  Variable axes toward each of the limits— 1,i =1, ...,n —
variables arises since often there is no a priori means to orderl: The fact that any two points in the space become increasingly
the input data. There is a means for handling this problem within ¢loSe asn rises suggests that an HDMR of a chemical
HDMR,25 and the discrete input variable capabilities of HDMR formulation, truncated to any order, should become more
have been successfully tested recently with protein mutationsaccurate asrises, a result that first may appear to be surprising.
where the discrete variables are the amino acid residues (sed his behavior was confirmed through simulations in upte

section 3.2). 20 dimensions, using both Cut-HDMR sampling on the surface
2.3.5. Functional HDMRIf inputs for a system consist of a  0f the chemically reachable volume and with RS-HDMR
set of functions, i.e., the input vecta(t) = (x(t), x2(t), ..., Xn- operating on the interior of the volume. Random sampling

(1)), then the system output becomes a functional. One approacﬁechniques may also effectively treat additional constraints
to this functional mapping problem is to assume a discretization among the input chemical component variables. The ability of
of the following form HDMR to readily capture the 10 behavior of complex multi-
N component mixtures in high dimensions may have significant
: implications for accelerating the search for successful materials
X0 = Zcikd’k(t) (49) formulations.

“ A simple mixture formulation illustration occurs for quater-
where{¢(t)} is a family of orthogonal functions. Then any  nary semiconductors 8;-«C,Di-y of overall dimensiom =
“functional” becomes a “function” of the parametegg, and 4 (e.g., Gani_P,As;-,). A problem of this type actually
the standard HDMR formulas are applicabieThis approach  corresponds to two coupled and constrained mixture problems
has been successfully implemented for a quantum scattering(j e, AB, , and GD:-,), each of two dimensions, resulting in
problem (see section 3.4) and an atmospheric radiative heatingyy overall formulation with dimension 2 when taking into
problem (see section 3.8). account the dual mass fraction constraints. A number of
semiconductor cases have been explored using laboratory one-
dimensional ternary data with Cut-HDMR to estimate the

At this stage of HDMR development, much of the activity is quaternary compound electronic band gap as an output property.
focused on testing the capabilities of the concepts and algorithmsTests of this type have proved to be quite successful, with

3. lllustrations of High Dimensional Model Representation
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Figure 2. (Left) Histogram plot of stability data from mutations of the gene V protein at sites 147 and V35, organized as originally préggnted.

This work, as well as other such double and higher order protein mutation studies, did not reveal underlying regular patterns in the datéomdentificat

of regular data patterns is essential to permit coarse sampling of mutations for an efficient description of the full space. The mutants colored red
are single site variants referenced to the wild-type cut center. (Right) This figure is a rearrangement of the same data in the left panel. The measured
value of the stability of each single-site mutant labeled in red was utilized to prescribe a monotonic ordering for the efficacy of the amino acids at
each site, thereby revealing the underlying pattern of regular behavior amongst the double mutants.
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guaternary band gap errors typically on the range-63% over over the inpuix space. The ideal ordering at one site vs another
the accessible composition spdéé®2” will surely be different, and the ordering will generally depend
3.2. Protein Engineering Through Mutations. There is on the particular measured protein property. It appears that a
much interest in the artificial mutation of proteins, to both rational ordering of the variables can be found, based on the
understand the role of the amino acid residues at individual set of single mutations of first order HDMR at each backbone
backbone sites, and especially for engineering purposes, to creatsite. The observed response due to the single mutations at each
tailored proteins with enhanced or specialized functional proper- site may be used to produce monotonic variation with respect
ties for biomedical or industrial applications. The variables in to a suitable ordering of the residues. It is then natural to expect
this case are associated with thbackbone sites on the protein  that the remaining behavior over the second-, or possibly third-,
chosen for mutation, with each variabietaking on up tcs = order HDMR mutation surfaces will be regular, if not mono-
20 residue values. At worst, the number of mutation experiments tonic. This variable ordering is crucial to make feasible coarse
will grow as~20", which is a frighteningly large number, as sampling among the mutations, and thereby efficiently employ
could be 10 or more in some cases. Over the past few decadesHDMR to interpolate between the sampfésigure 2 presents
many site-directed mutagenesis experiments have been peran illustration of the effect of protein mutation reordering with
formed on proteins. One general conclusion from these studiesthermodynamic stability data from the gene V prot&#’It is
is that observed protein properties, often of a thermodynamic evident that a simple reordering of the amino acid variables
nature, are dominated by low order cooperativity among the reveals the regular structure in the mutation space. These data
residues at the various backbone sites. The residues at each siteas taken in vitro, and similar behavior has been seen for in
tend to act dominantly alone as contributors to the observed vivo experimental data in the same protein.
protein property along with some degree of pair cooperativity ~ 3.3. Pharmaceutical DiscoveryThe discovery of pharma-
(i.e., residue-residue cooperative impact on the property), and ceuticals, from an HDMR perspective, is a sampling and
perhaps a little residual triple cooperativity in some cases. This interpolation problem analogous to the treatment of protein
observed dominance of low order cooperativity clearly has its mutations in subsection 3.2 above. In this case, the input
roots in the few-body nature of intramolecular forces, and it variablesx;, X, ..., X5 label the sites for functionalization on
plays very attractively into the structure of HDMR. some chosen molecular scaffold, and the variable values label
An additional special feature of all molecular discovery the discrete moieties considered for functionalization at the sites.
problems is that the variables= (X3, Xy, ..., X,) are inherently Unlike proteins, the number of input variables or sites is
discrete, and in the present protein case, each variable takes otypically smalln ~ 2—4, while the number of variable values
20 values for the natural amino acids. The exploration of protein (i.e., possible moieties at each site) can be arbitrarily large, often
mutations for their observed functional response is a problem exceeding 100. In addition, the molecular scaffold itself could
of judicious sampling and interpolation of the resporice be treated as another variable. The objective is to coarsely
throughout thex space. As such, a potentially serious difficulty sample this overall input space and interpolate over it so as to
arises since there is no a priori means to order the input variablereveal its structure with respect to specific measures of
amino acid residues at each backbone site. Without somepharmaceutical activity and other relevant properfi&s), | =
identified rational ordering, the resporfée) will likely appear 1,2, .... Typically, the aim is to optimize pharmaceutical activity
as random over thg space, and this behavior would prevent in balance with other goals such as minimizing the toxicity or
an efficient use of coarse sampling for interpolation. A good other induced undesirable physiological processes associated
ordering of the residue variables at each site is defined as onewith the drug. The search effort is also compounded by the fact
that produces well-behaved “smooth” property variatit{®y that the ideal pharmaceutical may not lie within the original
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subspace of moieties considered, and this circumstance eventu-
ally calls for extrapolation. Presently, such extrapolations
typically are carried out with only an incomplete understanding
of pharmaceutical efficacy throughout the originally defined
subspace of moieties. Without a rationalization and exploration «
of the original full subspace, extrapolation can be ineffective,
and possibly lead syntheses down the wrong path, upon
expansion of the subspace. An identification of the true regular
behavior in the original subspace of moieties would provide
the best information for an extrapolation beyond.

A critical component of pharmaceutical discovery with 8.0+
HDMR, as with protein mutations in subsection 3.2, is the . . .
ordering of the moiety variables in a rational fashion, based on 3.0 6.0 9.0 12.0
first-order information on the observed pharmaceutical properties r/A
f(x),1 =1, 2, ... . It may also occur that each observed property 1 . . . .
has its own best moiety orderingsAlthough a full exploitation Scattering Map Error B
of this algorithm has not occurred at this time, the literature on
pharmaceutical activity data does reveal the general dominance
of the first order HDMR contributions. This behavior strongly
suggests that suitable moiety ordering will produce regular
behavior throughout the moiety space in analogy with what has
been observed with protein mutations. Coarse sampling and
interpolation should be key components of any molecular
discovery effort guided by HDMR.

One conclusion from these molecular discovery algorithmic
considerations is that it is essential to perform good quality
functional observation#)(x), | = 1, 2, ... for reliable interpola- 0 . ' 06 0
tion. Although the current practice often involves qualitative % Error

high thro_ughput screening observations, pharmac_eutlcal dIS'Figure 3. (A) An illustration of the dynamical range of a functional
covery with HDMR offers the prospect of performing many  cyt-HDMR map for atom-atom scatterifgHere v denotes the cut-
fewer candidate syntheses, provided that appropriate goodcenter reference potentialyi(r) anddVi(r) of width 2A indicate the
quality gray scale functional observations are performed to full range of theith andjth HDMR variablesx = o0Vi andx = V.
assess the effectiveness of the pharmaceutical candidates. Thesée HDMR is first order in the potential variables and second order

latter comments also apply to all molecular and material with respect to the potential and scattering energy. (B) The HDMR
discovery efforts with HDMR map over the domain of (A) produces scattering cross sections of high

) . accuracy for all scattering potentials in the shaded region covering the
3.4. Potential Surfaces and Dynamical Observablesn all main block elements of the periodic table. The error statistics from
applications of molecular dynamics, a general desire is to 100 000 random potentials is shown for the cross sections: elastic

understand the influence of potential surface structure upon differential o(6), elastic integrabr, diffusion o4, and viscosityo,.
system observables, such as cross sections, rate constants, etc.

As an 10 mapping problem, the input potentigr) depending  potential will appear in the 10 map through some possibly

Scattering Map Domain A

T sv(r)
P

o

A
S
o

®
[S)
T

u(r) / 1x10

Distribution

on p coordinatesr = (ry, rz, ..., Ip) is a function and the  complex layers of integrations. The presence of integrations over
observable output is functionalof the input. In practice, one  the potential is important, as it implies that thie local region
may often discretize the potential at poimt& = (r¥, r¥, ..., of the potential specified by, = V(r®) should have only a
rg)), | =1, 2, ...,n, in the configuration space to produce a limited influence on the output, even over a reasonable
large number of variables = (X1, X, ..., X,), Where thelth dynamical range of its variability), < x < VU Further-

variablex = V(r®) is the value of the potential at the particular more, increasing the spatial resolution of the potential surface
point r®). Consideringx as an input variable is a meaningful  will just further contribute to this attractive behavior within
perspective, as the precise value of the potemtial V(r®) at HDMR, to likely produce only low order significant contribu-
any pointr® is rarely known to high accuracy. In this fashion, tions to the output. Tests of this concept have been carried out
an HDMR may be constructed for each observable, either to map atom-atom potentials upon total and differential elastic
through cut or random sampling techniques. Two issues of scattering cross sections as the output, with the potential
concern arise in generating such 10 mappings. First, the naturaldiscretized up te = 1000 variables over a very broad dynamic
desire for high resolution of the input potential over the rangeVl) < x < V0 | =1, ..,n. Figure 3 illustrates the
coordinate spaceimplies that the number of variablesould attained dynamic range exhibiting good accuracy, based on first-
be very large, ranging from hundreds to thousands even for order HDMR with respect to the potential variables and second-
problems of low configuration space dimensjarin addition, order HDMR coupling between the potential and the scattering
it is not at first immediately evident whether this definition of energy, which is also treated as an input varid@bf.
variablesq = V(r®), 1 = 1, 2, ...,n, will inherently lead to low The dynamic range is large, and most of the significant
order cooperativity in the HDMR expansion. There is a special HDMR component functions are quite nonlinear with respect
serendipitous circumstance with HDMR implying that higher to their variables. Random test samples of potentials in the
potential spatial resolution (i.e., higher system dimensjouill shaded region of the figure showed that the HDMR could
in fact lead to simpler HDMR structure. estimate the cross section for virtually any potential in the
To appreciate the latter attractive feature, recall that an outputdomain, with errors less than 1%. Essentially the same quality
observable will be a functional of the input potential, and the results were obtained with either Cut- or RS-HDMR. The RS-
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HDMR is more efficient at high values af, and this issue  the relationship between control field features and dynamical
should even be more important for similar multidimensional events. The HDMR decomposition should be capable of
potential— observable HDMR maps. providing insights in this regard, as it inherently is based on

3.5. Laboratory Data Inversion. Inverse pr0b|ems are variable Cooperativity. Simulations of an HDMR-based control

particularly challenging in virtually any area of science and algorithm has been carried 8tit** on model systems of up to
engineering, and chemistry is no exception. Invariably, there is 10 quantum levels; the algorithm presently awaits implementa-
insufficient laboratory data or significant errors in the data to tion in the laboratory.

prevent a unique identification of the underlying model, and  3.7. Chemical Kinetics Mapping. Reactive flow is an
traditional techniques based on linearization procedures typically important feature of many industrial and environmental pro-
produce a single inverted model, giving essentially no indication cesses. Typically, the modeling of such processes is broken into
of the breadth of possibilities. In practice, all inversion pieces, one of which is chemical kinetics (i.e., with the
algorithms call for repeated solution of the system equations of remaining processes often being mass, momentum, and energy
motion (e.g., the Sclichnger equation in the case of quantum transport). In many of these applications, the kinetics portion
dynamics) in an iterative process. Inpttoutput maps, such  has grown to be a bottleneck due to the large number of species
as generated by HDMR, can be employed in an inverse involved and the resultant excessive costs of solving the kinetic
algorithm, to act as an equivalent stand-in for the original differential equations. In the latter circumstance, the chemical
equations of motion. HDMRs, due to their use of simple low- kinetics package in the overall modeling code may be called
dimensional interpolation, are typically extremely fast to evalu- upon an enormous number of times during a long-term temporal
ate. This fact, coupled with the ability of genetic-type algorithms calculation. For example, in the case of global stratospheric
to explore for families of solutions, provides a special capability chemical modeling over a full year, the chemical kinetics
for the inversion of chemical/physical data to identify an package may be called upward ofLC° times, considering all
underlying family of models consistent with the d&ta3® of the spatial cells in the atmosphere and their generally distinct
Although first generating an HDMR for 10 mapping entails chemical processes. Currently, practical calculations of this
some computational overhead, that cost can be acceptable irmagnitude are only made feasible by including oversimplified
many applications compared with the effort of attempting the models of the chemical kinetics, perhaps also performed to less
same objective of identifying a family of consistent inverse than the highest accuracy. HDMR offers a special capability as
solutions on the basis of calling up the original system dynamical a IO chemical kinetics map, with the input being initial chemical
equations many times upon each iteration. Considering Figure concentrations and perhaps other variables (e.g., solar intensity
3 again, as an example, the broad window of applicability of for photochemical reactions), and the output similarly being
the 10 HDMR map, when combined with laboratory data, can chemical concentrations at a later time. Thus, by repeating this
identify the family or distribution of potential surfaces consistent process for successive times, an HDMR effectively can act as
with the data and its quality. A successful simulation of this an integrator, with perhaps a very large time step size. The
type of global inversion was carried out, using total elastic cross potential increased efficiency of an HDMR due to the general
sections as data. The ability of HDMR to aid in the inversion speed of its evaluation, and the large time steps could in turn
by providing a family of models consistent with laboratory data allow for the inclusion of enhanced chemical mechanisms. The

is generic, and should be applicable to other inverse problemsgeneration of test HDMR's for this purpose has been carried
besides scattering. out, both in terms of single box models in the atmosphere, as

3.6. Optimal Control of Molecular Motion. There is well as implementation into full three-dimensional reactive

considerable interest in the design of optimal laser fields for global circulation modeling. Figure 4 gives the comparison
implementation in the laboratory to control molecular dynamics Petween the results provided by traditional look-up data table
phenomena. The process of optimal design produces a speciaiethod and HDMR:

type of inverse problem mathematically similar to those in  HDMR map time steps of up to 24 h were successful,
subsection 3.5, but in this case, the multiplicity of solutions is suggesting that this line of development should be fruitful for
an attractive feature for exploitation in laboratory control further applications. Analogous applications have also been
applications. Viewed as an inverse problem, the molecular carried out for optimal control of catalytic methanol conversion
control objectives are first prescribed, and these objectives areto formaldehyd& and reactive transport in soil medi&!® In
analogous to the observed data in subsection 3.5. As thethe latter case, an HDMR was generated covering the agueous
objectives are often few and simple (e.g., breaking a particular chemistry, as well as much of the transport processes.
chemical bond), finding some suitable control fie(t) presents 3.8. Atmospheric Solar Radiation Transport.In conjunc-

a problem that is generally highly underposed leading to the tion with the illustration in subsection 3.7, another component
many possible good control solutions. The goal is to find at of realistic atmospheric modeling is solar radiation transport.
least one of these good solutions. Current laboratory proceduresSolar radiation can drive photochemical kinetics, and this
for this purpose have employed genetic algorithms, using the process would be included in the chemical kinetics HDMR's
actual molecular sample in a closed-loop process. This procedurediscussed in subsection 3.7. In addition, solar radiation may be
has proven successful, but it is also (a) subject to potential absorbed by trace gases in the atmosphere, ultimately resulting
inefficiency as the number of significant input control variables in atmospheric heating when some of the absorbed radiation is
(i.e., often taken as the control field frequency components) rise transferred to molecular translation-rotation-vibration degrees
into the hundreds, and (b) no knowledge is gained about the of freedom through molecular collisions. This solar radiation
independent, and especially the cooperative roles of the dis-energy transfer process is of special concern for issues of global
cretized spectral phases or amplitudes of the control field. An warming, due to the presence of carbon dioxide, methane, and
HDMR generated from laboratory data with the control field other atmospheric trace species that are strong radiative absorb-
treated as input and the molecular target as the objective caners. The passage of radiation through the atmosphere, its
address both of these concerns. The ability to treat item (b) is reflection from the earth’s surface, and retransversal through
especially important, as there is basic interest in understandingthe atmosphere into outer space, is traditionally modeled by
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Figure 5. Results from the HDMR for atmospheric heating rates. The
panel on the left is a random set of (dotted) atmospheric temperature
and (solid) water profiles, with the corresponding heating rate in the
panel to the right. The HDMR predictions (solid dot) are very accurate
compared to the original heating rate code output. The HDMR output
was determined at cost of1( less than that of the original heating
rate code

the resultant heating profile from the HDMR, as well as that
i obtained by the original radiation transport package. This typical
00 10% 30% 30% 40%  50% result illustrates the excellent quality of the HDMR. Much
® further development is needed to include additional atmospheric
physical effects (e.g., clouds) and species to produce a viable

Figure 4. Percentage deviation from the exact solution of the ozone H{pMR radiative package for insertion into full atmospheric
net chemical tendency (productiedestruction) predicted by (a) the modeling

4-way look-up table, (b) the HDMR approximation in the surface level
during February. The HDMR results are overall more relidble.

4. Concluding Remarks

solving an appropriate set of differential equations describing ~ This article has focused on chemical/physical phenomena
the process. The input to such models is the column densitiesi"volving large numbers of input variables, and it should be
of the trace gases and the temperature profile as functions ofévident that problems of this type are quite generic in many
altitude. As with chemical kinetics, such radiative transport &réas involving experimentation, plant operations, and modeling.
calculations are performed an enormous number of times in theESsentially the same methodology being developed for these
global treatment of atmospheric modeling over realistic time chemical applications may be transferable to even broader
intervals. Enhanced efficiency of this component of atmospheric classes of problems of equal significance in other domains.
modeling could have a significant impact on overall model EXploration of the diverse applications of HDMR can, in turn,
performance. stimulate further development of the primary chemical/physical

From a system |0 perspective, atmospheric radiation transportaPplications. As an example going beyond chemistry, economic
is a functional mapping problem analogous to the potential Systems of all types are frequ_ently characterized as 10 problems
surface mapping called for in subsection 3.4. The input consistsfor understanding and estimation of future behavior. An
of functions describing the trace species column densities andillustration of this type was carried out considering derivatives
the temperature profile; in addition, the output heating rate is (i.e., financial |nstlryments whose value derives from. the value
also a function of the altitude. In practice, the input functions ©f other commodities). An HDMR was generated with= 5
would be discretized, possibly on a grid over the altitude, and INPut variables, based on real trading data. The quality of the
the value of each of these discretized variables may be treated®Sults was excellent, with the HDMR showmgs predictive
as an input variable to an HDMR. This problem has the same c@pability with errors typically no larger than 8%:

advantageous feature as quantum mechanical potential surface Beyond this application, interestingly, there are others in
input in subsection 3.4, where better input spatial resolution €conomics which are mathematically analogous to those arising

also coincidentally tends to produce simplified and more N chemistry. For example, industrial plant or economic system
accurate HDMR's. An illustration of the ability of an HDMR performance under conditions of constrained resources is a
to capture radiation transport behavior has been carrietf out Problem mathematically like that of chemical formulations

with atmospheric temperature and water vapor concentrationth€ory in subsection 3.1 where a mass fraction constraint was
each discretized at 30 altitudes as input along with the earth’s Present. Many analogies to other interesting problems also exist.

surface temperature and albedo, leading to a total of 62 K | h h K | ‘
variables. The output heating rate was also discretized into 30 _ Acknowledgment. The authors acknowledge support from

atmospheric layers, and each of the local heating rates becaméjegartmer;t of Defense, tk(lje Environmental Protection Agency,
an HDMR over the full space of 62 input variables. The resultant 21d Hercules Incorporated.

Cut-HDMR's, taken to second order, produced excellent results
for predicting heating rates with errors no larger thag%,

with the HDMR simultaneously being nearlyl (® times faster (1) Diaconis, P.; Shahshahani, M. On Nonlinear Functions of Linear
to evaluate than the original radiation transport code. An CombinationsSIAM J. Sci. Stat. Comput984 5, 175-191.

. . . R - (2) Friedman, J.; Stuetzle, W. Projection Pursuit RegressioAm.
illustration of 10 radiation transport behavior is shown in Figure - star, Assoc1981, 76, 817-823.

5 for an arbitrary water and temperature profile as input and (3) Huber, P. Projection Persufnn. Statist1985 13, 435-525.

References and Notes



Feature Article J. Phys. Chem. A, Vol. 105, No. 33, 2002777

(4) Stone, C. J. Additive Regression and Other Nonparametric Models.  (26) Shim, K.; Rabitz, H. Electronic and Structure Properties of the
Ann. Stat.1985 13, 689-705. Pentanary Alloy Gdni—xP,ShAS:i—y—. J. Appl. Phys 1999 85, 7705~

(5) Parker, D. Learning Logic. Working paper No. 47; Center for 7715.
Computational Research in Economics and Management Science, Mas-  (27) Rabitz, H.; Shim, K. Multicomponent Semiconductor Material
sachusetts Institute of Technology: Cambridge, MA, 1985. _ Discovery Guided by a Generalized Correlated Function Expansion.

(6) Piggio, T.; Girosi, F. Networks for Approximation and Learning.  Chem. Phys1999 111, 10640-10651.

Proc. IEEE199Q 78, 1481-1497. (28) Sandberg, W. S.; Terwilliger, T. C. Engineering Multiple Properties

(7) Girosi, F.; Poggio, T. Representation Properties of Networks: ; ; : ;
Kolmogorov's Theorem is IrrelevaniNeural Comput1989 1, 465-469. %gapg%teégé)?y_ gg;nlt.)matonal Mutagenesioc. Natl. Acad. Sci. U.S.A.

App(r?)iirliﬁcgﬁgrgzép?i'ng(;é;: GNoéltvfi(hoert’ Rllggg Makovoz, YConstructie (29) Sandberg, W. S.; Schlunk, P. M.; Zabin, H. B.; Terwilliger, T. C.

(9) Frisch, H. L. Borzi, C.; Ord, G.; Percus, J. K.; Williams, G. O. Relationship between in Vivo Activity and in Vitro Measures of Function
Approximate Representation of Functions of Several Variables in Terms and Stability of a ProteirBiochem.1993 34, 119706-11978. )
of Functions of One VariablePhys. Re. Lett. 1989 63, 927-929. (30) Shenvi, N.; Geremia, J. M.; Rabitz, H. A Genetic Algorithm
(10) Gorban, A. N. Approximation of Continuous Functions of Several Solution to the Substituent Ordering Problem in Library Optimization.
Variables by an Arbitrary Nonlinear Continuous Function of One Variable, Manuscript in preparation.

Linear Functions, and Their Superpositiodgpl. Math. Lett.1998 11, (31) Geremia, J. M.; Rabitz, H.; Rosenthal, C. Constructing Global

45—49. Functional Maps between Molecular Potentials and Quantum Observables.
(11) Rabitz, H.; Alis, O. F.; Shorter, J.; Shim, K. Efficient Input-output ~ J. Chem. Phys2001 In press.

Model Representation€omput. Phys. Commui999 117, 11-20. (32) Geremia, J. M.; Rabitz, H. A Global, Nonlinear Method for
(12) Alis, O.; Rabitz, H. General Foundations of High Dimensional  Extracting Potentials from Spectral Data: The Singlet and Triplet States

Model Representations. Math. Chem1999 25, 197-233. of Na2.J. Chem. Phys2001 Submitted for publication.

(13) Shim, K.; Rabitz, H. Independent and Correlated Composition
Behavior of Material Properties: Application to Energy Band Gaps for the
Gayln1—«PbAs—s and GgIni—.PbSbgAs s, Alloys. Phys. Re. B. 1998

(33) Shenvi, N.; Geremia, J. M.; Rabitz, H. Nonlinear Kinetics Parameter
Identification by HDMR Map Inversion. Manuscript in preparation.

58, 1940-1946. (34) Geremia, J. M.; Rabitz, H. A Global, Nonlinear Algorithm for
(14) Shorter, J.; Precila, C. Ip.; Rabitz, H. An Efficient Chemical Kinetics ~ Inverting Quantum Mechanical ObservatioRys. Re. A2001 Submitted

Solver using High Dimensional Model Representatigh®2hys. Chem. A for publication.

1999 103 7192-7198. (35) Geremia, J. M.; Rabitz, H. The AHCI Potential Energy Surface

(15) Alis, O.; Rabitz, H. Efficient Implementation of High Dimensional ~ From a Global Map-Facilitated Inversion of State-to-State Rotationally
Model Representations. IMathematical and Statistical Methods for ~ Resolved Differential Scattering Cross Sections and Rovibrational Spectral
Sensitiity Analysis Saltelli, A., Ed.; John Wiley and Sons: New York, Data.J. Chem. Phys2001 Submitted for publication.

2000. o (36) Geremia, J. M.; Zhu, W.; Rabitz, H. Incorporating Physical
(16) Ghanem, R. G.; Spanos, P. Btochastic Finite Elements: A Implementation Concerns into Closed Loop Quantum Control Experiments.
Spectral ApproachSpringer-Verlag: New York, 1991. J. Chem. Phys200Q 113 10841-10848.

_(17) Wang, S.; Jaffe, P. R.; Li, G.; Wang, S. W.; Rabitz, H. Simulating  (37) Geremia, J. M.; Weiss, E.; Rabitz, H. Achieving the Laboratory
Bioremediation of Uranium-Contaminated Aquifers; Uncertainty Assess- contro| of Quantum Dynamics Phenomena Using Nonlinear Functional
ments of Model Parameters. Contam. Hydrol.2001 Submitted for Maps.Chem. Phys2001 In press.

publication. (38) Geremia, J. M.; Rabitz, H. An Efficient Optimal Identification

(18) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Algorithm: ; - o
- ; ; : ; ; . gorithm: The Synthesis of Quantum Optimal Control and Map-Facilitated
Numerical Recipes in FORTRARambridge University Press: New York, Inversion.Chem. Phys2001 To be submitted.

1992; p 299-319. : . .
(19) Gordon, W. J. Distributive Lattices and the Approximation of (39) Biteen, J.; Geremia, J. M.; Rabitz, H. Closed-Loop Quantum Control
Muitivariate Functions. IProceedings of the Symposium of the Approxima- Utilizing Time Domain Maps. Manuscript in preparation.

tion with Special Emphasis on Spline Functip8&shoenberg, I. J., Ed.; (40) Biteen, J.; Geremia, J. M.; Rabitz, H. Quantum Optimal Quantum
Academic Press: New York, 1969; pp 22377. Control Field Design Using Logarithmic Maps. Manuscript in preparation.
(20) Sobol, I. M. Sensitivity Estimates for Nonlinear Mathematical (41) Wang, S. W.; Levy, H., Il; Li, G.; Rabitz, H. Fully Equivalent
Models. Mathematical Modelling and Computational Experimefi&93 Operational Models for Atmospheric Chemical Kinetics within Global
1, 407-414. Chemistry-transport Modelsl. Geophys. Res999 104 D23, 30417
(21) Hastie, T. J.; Tibshirani, R. JGeneralized Additie Models 30426.
Chapman and Hall: London, 1990; p 112. (42) Faliks, A; Yetter, R. A.; Floudas, C. A.; Bernasek, S. L.; Fransson,

72%%)7;%'9%8'(' T.; Ho, T. S.; Rabitz, H. Chem. Phys1997 106, M.; Rabitz, H. Optimal Control of Catalytic Methanol Conversion to

= . . . . F IdehydeJ. Phys. Chem. R200Q | .

(23) Li, G.; Wang, S. W.; Rabitz, H.; Rosenthal, C. High Dimensional orznga 5 é?W ysS Vz\e/m Rabit nHPrsis S K. Jaffe. P. Global

Model Representations Generated from Low Dimensional Data Samples I: | _(43) Li. G.; Wang, S. W.; Rabitz, H.; Wang, S. K.; Jaffe, P. Globa

mp-Cut-HDMR.J. Math. Chem2001 In press. Uncertainty Assessments by High Dimensional Model Representations
(24) Wang, S. W.; Levy, H., II; Li, G.; Rabitz, H. Fully Equivalent ~ (HPMR). Chem. Eng. Sc2001 To be submitted. ) )

Operational Models generated by a monomial preconditioning method for ~ (44) Shorter, J.; Rabitz, H. Radiation Transport Simulation by Means

Atmospheric Chemical Kinetics within Global Chemistry-transport Models. of a Fully Equivalent Operational ModeGeophys. Res. Let200Q 27,

J. Geophys. Re2000 Submitted for publication. 3485-3488.
(25) Rabitz, H.; Pierce, L.; Li, B.; Carey, J. Mapping Protein Functional- (45) Faliks, A.; Alis, O.; Rabitz, H. A Nonparametric Approach to
ity: Revealing Patterns in High-Dimensional Sequence Sigmence200Q Pricing Derivative Securities via High Dimensional Model Representations.

Submitted for publication. Manuscript in preparation.



